ABSTRACT BOOK

41	02:40 PM	S1:63EC	QSAR, Synthesis, Characterization and Pharmacological Evaluation of Substituted Indazole Derivatives as Antimicrobial Agents	Mr. Shashank Shekhar (Netaji Subhas Institute of Technolgy)
42	02:40 PM	S1:JZL2	Mechanical properties and failure characteristics of titanium based bulk metal glass	Mr. Tomoki Shigeoka (Okayama University)
43	02:40 PM	S3:8SMC	Synthesis and Self-organization of comb-like polymers possessing amphiphilic diblock polymeric side chain	Mr. Wen-li Wang (Kangawa University)
44	02:40 PM	S1:HNYJ	Visual Spectral Analysis of Polymer Blend Dispersion in Microcompounder	Mr. Won-taek Oh (Hannam University)
45	02:40 PM	S2:G53V	Improved Performance of Nitride-based UV LED with MOCVD Grown Tin-doped Indium Oxide as UV Transparent Conductive Layer	Mr. Yi Zhuo (Sun Yat-Sen University)
46	02:40 PM	S3:CPSA	High Contrast and Low ower Consuming Electrochromic Polymer Displays	Mr. Younghoon Kim (Yonsei University)
47	02:40 PM	S1:X9TQ	(Effect of Li Substitution on the Magnetic Properties of Na1-) (xLixFeSO4F by Mössbauer spectroscopy)	Ms. Hyunkyung Choi (Kookmin University)
48	02:40 PM	S3:959C	Self-reduction and luminescence properties of Ce4+→Ce3+ based on novel layered compound MgIn2P4O14	Ms. Jing Zhang (Central South University)
49	02:40 PM	S2:SAF7	Atomic-Layer-Deposition of Indium Oxide Films for Thin-Film Transistors	Ms. Qian Ma (Fudan University)
50	02:40 PM	S3:U234	Fabrication and Evaluation of Biodegradable Nanofiber as a Surgical Sealant for Hepatic Trauma by Solution Blow Spinning	Ms. Sang Eun Hong (Hannam University)
51	02:40 PM	S3:EF7X	A study on the manufacturing method of 3D scaffold based on wrinkled nanofiber for promoting nerve regeneration	Ms. Seo Yeon Lee (CHONBUK national university, Republic of KOREA)
52	02:40 PM	S1:TFEF	Effect of Particle Shape and Size on the Structure and Optical Band-Gap of Zinc Oxide Nanoparticles	Ms. Thiago Alves (Federal Institute of Science, Education and Technology of Goias - Brazil)
53	02:40 PM	S1:K7NG	Stretchable supramolecular hydrogels with triple shape memory effect	Ms. Xiaoxia Le (NIMTE, CAS)
54	02:40 PM	S1:QAXE	Structural Degradation Assessment of Reinforced Concrete Structures using Self-diagnosis Technology	Prof. An Cheng (National Ilan University)
55	02:40 PM	S1:E8LD	Characterization on Acoustic Emission Identification of MgO- C Refractory Damage Based on Principal Component Analysis and Empirical Mode Decomposition	Prof. Changming Liu (Wuhan University of Science and Technology)
56	02:40 PM	S1:BPCQ	Preparation of acrylate-based and alkali-soluble polymer coating ink	Prof. Chul Woo Lee (Hanbat National University)
57	02:40 PM	S2:VU6Z	Influence of Sputtering Pressure of Channel Layer on the Performance of Hafnium-doped Zinc Oxide TFTs	Prof. Dedong Han (Peking University)
58	02:40 PM	S1:5B6U	Giant Dielectric Permittivities in Functionalized Barium Titanate/Epoxy Resin Polymer Composites with Low Loss Tangent	Prof. Haiping Xu (Shanghai Polytechnic University)
59	02:40 PM	S1:37EJ	Preparation of Epoxy-modified Silicone-treated Micro- /Nano-Silicas in Epoxy/Silica Composites for Electrical Insulators	Prof. Hong-ki Lee (Woosuk University)
60	02:40 PM	S2:NFMC	A novel in-situ Al-doped ZnO films by atomic layer deposition with an interrupted flow method	Prof. Hsin-yi Lee (National Synchrotron Radiation Research Center)
61	02:40 PM	S1:7nbb	Nanoparticle/MOF composites: preparations and applications	Prof. Huaiguo Xue (Yangzhou University)

Effect of Li Substitution on the Magnetic Properties of Na_{1-x}Li_xFeSO₄F by Mössbauer spectroscopy

Hyunkyung (Choi), Sam Jin Kim, Chul Sung (Kim)

Department of Physics, Kookmin University, Seoul, Republic of Korea newton@kookmin.ac.kr/presenting author cskim@kookmin.ac.kr/corresponding author

Iron based fluorosulfate, $MFeSO_4F$ (M=Na, Li) compounds has been known as theoretical positive electrode material with high operating voltage [1]. The addition of Li ions engenders a charge difference and modification to the dimensionality of the lattice along with an redox potential, thus offering the new architectures and electrochemical behavior [2]. In this study, the crystal and magnetic structure of $Na_{1-x}Li_xFeSO_4F$ fluorosulfates has been investigated with the XRD, VSM and Mössbauer analysis. The $Na_{1-x}Li_xFeSO_4F$ (x=0.01, 0.05, 0.1) samples were synthesized by ionothermal method due to the poor hydrolytic stability. The prepared $Na_{1-x}Li_xFeSO_4F$ samples have monoclinic structures with space group of $P2_1/c$. The lattice constants and volume of the Na_{1-x}Li_xFeSO₄F samples decreased with increasing Li concentrations. According to the temperature dependent magnetic susceptibility of Na_{1-x}Li_xFeSO₄F samples showed abnormal antiferromagnetic behaviors with decreasing Néel temperture (T_N) due to Li substitution. For Na_{1-x}Li_xFeSO₄F, the T_N ordering temperatures, determined to be 33, 32.5, and 32 K for x=0.01, 0.05, and 0.1, respectively. In order to investigate the magnetic structure in terms of Fe nucleus, temperature dependent Mössbauer spectrum recorded at various temperatures ranging from 4.2 to 295 K. The Mössbauer spectrum of $Na_{1-x}Li_xFeSO_4F$ at room temperature consists of two doublets, indicating the existence of Fe^{2+} sites. Each spectrum of $Na_{1-x}Li_xFeSO_4F$ in the T< T_N was fitted to two set(A, B-site) of asymmetrical 8 lines, considering the magnetic hyperfine $field(H_{hf})$ and electric quadrupole splitting(ΔE_Q) interaction. The H_{hf} and ΔE_Q values of Na_{0.95}Li_{0.05}FeSO₄F at 4.2 K were determined to be $H_{\rm hf,A} = 245$ kOe, $\Delta E_{\rm Q,A} = 2.76$ mm/s and $H_{\rm hf,B} = 312$ kOe, $\Delta E_{\rm Q,B} = 2.77$ mm/s. From these results, these chagnes in Na_{1-x}Li_xFeSO₄F are originated from the strong electric crystalline field which can be enhanced the asymmetric Mössbauer spectra below $T_{\rm N}$.

Keywords: Antiferromagnetism, Cathode, Mössbauer spectroscopy

[1] TRIPATHI, R., RAMESH, T. N., ELLIS, B. L., NAZAR. L. F. 2010. Scalable Synthesis of Tavorite LiFeSO₄F and NaFeSO₄F Cathode Materials. *Angew. Chem. Int. Ed.*, 49, 8738-8742.

[2] XIE, Y., YU, H. T., YI, T. F., WANG, Q., SONG, Q. S., LOU, M., ZHU, Y. R. 2015. Thermodynamic stability and transport properties of tavorite LiFeSO₄F as a cathode material for lithium-ion batteries. *J. Mater. Chem. A*, 3, 19728-19737.

Acceptance ID: X9TQ-P