IcAUMS 2018

The 5th International Conference of Asian Union of Magnetics Societies

June 3-7 (Sun.-Thur.), 2018

Ramada Plaza Jeju Hotel, Jeju, Korea

G5-1540 First-principles Study of Electric Field Induced Giant Perpendicular Anisotropic Energy of Two-dimensional VS₂ Monolayer

<u>Huei-Ru Fuh</u>^{1,2}, Ke-Chuan Weng³, Yeu-Chung Lin¹, Tsung-Wei Huang¹, Horng-Tay Jeng⁴, Chi-Ho Cheung¹, Ming-Chien Hsu¹, Ching-Ray Chang¹

¹National Taiwan University, Taiwan, ²Yuan Ze University, Taiwan, ³Institute of Nuclear Energy Research, Taiwan. ⁴National Tsina-Hua University. Taiwan

G5-1641 Comparison and Validation of Anisotropic Magnetization Models for Grain-oriented Silicon Steel

Xuan Teng¹, Dong Wang¹, Junquan Chen¹, Yapeng Jiang¹, <u>Xiaoqin Zheng</u>² ¹Nayal University of Enaineerina. China. ²Oinadao University. China

G5-1649 Magnetism and Magnetocrystalline Anisotropy of C-substituted τ-MnAl

<u>Jin Sik Park</u>, Sonny Rhim, Soon Cheol Hong *University of Ulsan, Korea*

G5-1722 Magnetic Anisotropy of Highly Nd_{3-x}Bi_xFe_{5-y}Ga_yO₁₂ Studied by FMR Measurements

<u>Takayuki Ishibashi</u>¹, Gengjian Lou¹, Jion Yamakita¹, Masami Nishikawa¹, Nobuyasu Adachi², Takeshi Kato³. Satoshi Iwata³

¹Nagaoka University of Technology, Japan, ²Nagoya Institute of Technology, Japan, ³Nagoya University, Japan

G5-1744 Magnetic and Dielectric Properties of LiFePO₄ by Mössbauer Spectroscopy

<u>Jae Yeon Seo</u>, Hyunkyung Choi, Jung Tae Lim, Chul Sung Kim Kookmin University, Korea

G5-1757 Mössbauer Studies of LiFe_{1/3}Mn_{1/3}Ni_{1/3}PO₄ Cathode Material

Hyunkyung Choi, Soyeon Barng, Chul Sung Kim

Kookmin University, Korea

G5-1775 Effect of Decomposition Process on Crystallization of Garnet Films Fabricated by Metal Organic Decomposition Method

Yuya Hironaka, Hina Saito, Yoshito Ashizawa, Katsuji Nakagawa Nihon University, Japan

G5-1840 First Principles Calculation on Magnetism and Magnetocrystalline Anisotropy of FeNi

Mun Bong Hong, Jin Sik Park, Sonny Rhim, Soon Cheol Hong University of Ulsan. Korea

G5-1989 Electronic Structures of Quasi Two-dimensional Cubic CsSnBr₃ Perovskite Nanoplatelets

WJ Fan

Nanyang Technological University, Singapore

Mössbauer studies of LiFe_{1/3}Mn_{1/3}Ni_{1/3}PO₄ cathode material

<u>Hyunkyung Choi</u>, Soyeon Barng, Chul Sung Kim* *Kookmin University, Korea*

LiMPO₄ (M: transition metal) cathode materials of olivine structure have been studied to exhibit specific magnetic properties due to spin orbit at low temperature. We were synthesized Mn and Ni-doped LiFePO₄ sample with concentration of each 30 % molar ratio using a solid state reaction method. The sample have been characterized by means of Rietveld refinement of XRD patterns, VSM, and Mössbauer spectroscopy. The LiFe_{1/3}Mn_{1/3} Ni_{1/3}PO₄ sample shows that the single phase having the orthorhombic (space group: Pnma). The lattice parameters of sample were determined to be a_0 = 10.3293, b_0 =6.0060, and c_0 =4.6948 Å. Temperature-dependent magnetic susceptibility curve shows the antiferromagnetic (AFM) structure with the Néel temperature (T_N) of 40 K for LiFe_{1/3}Mn_{1/3} Ni_{1/3}PO₄. The Mössbauer spectra of LiFe_{1/3}Mn_{1/3} Ni_{1/3}PO₄ show a distorted lines broadening below T_N . The Mössbauer spectrum at 4.2 K were composed of eight lines with measured value of hyperfine field H_{hf} = 118.95 kOe, electric quadrupole splitting ΔE_Q = 2.79 mm/s, isomer shift δ = 1.21 mm/s, polar ϑ = 0°, azimuthal φ = 0°, and asymmetric parameter η = 0.8. Ratio of the magnetic dipole and electric quadrupole interaction was to be 3.4, the large value of R indicates that the quadrupole interaction is larger than the magnetic dipole interaction. Also, we observed that the value of hyperfine field rapidly decreased with increasing temperature near T_N . The quenched orbital angular moment due to strong crystalline field of the asymmetric MO₆ structure has weakened the spin-orbit coupling.

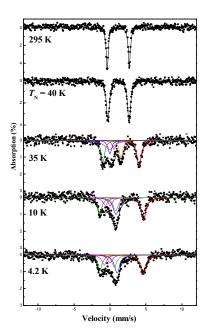


Fig. 1. Mössbauer spectra of LiFe_{1/3}Mn_{1/3} Ni_{1/3}PO₄ at various temperatures.