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Temperature dependence of integrated intensity of the AFM peak and 
ferroelectric polarization.
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The multiferroic lacunar spinel, GaV4S8, realizes a Néel skyrmion lattice 
(SkL) phase below the ferromagnetic Curie temperature, TC = 13 K. Due to a 
cubic to rhombohedral structural transition [1] at TJT = 42 K (JT = Jahn-Teller),  
the magnetic easy axis is oriented in the direction of rhombohedral distortion 
along one of four equivalent <111> directions. Unlike the chiral SkL that 
exists in the well-studied cubic helimagnets, the Néel SkL can be described 
as a superposition of spin cycloids. Furthermore, the vortex cores are fixed 
along the magnetic easy axis. [2] The propagation direction of the incom-
mensurate spin cycloid and SkL is confined within the lamellar ferroelectric 
domains. Thus, the relaxation dynamics observed in this system are compli-
cated by coexisting magnetic orders and the termination of the spatial-
ly-modulated magnetic states at the structural domain boundaries. [3] In this 
study, we investigate the relaxation mechanisms across the magnetic phase 
diagram of GaV4S8 as a function of temperature and magnetic field. Ac 
susceptibility measurements are performed for frequencies f = 11 – 10,000 
Hz, which allow the detection of relaxation phenomena on time-scales 
ranging from the response of the magnetic superlattice to the moments of 
the magnetic domains. Particularly, our results allow the refinement of the 
dynamic response as the magnetic phases evolve from high temperature- 
information which is typically lost in measurements confined to longer time 
windows. At low temperature, we investigate the transition between the 
zero-field spin cycloid and the ferromagnetic ground state. In this regime, the 
higher harmonic components of the ac magnetic response support the picture 
of a harmonically-modulated cycloid spin structure which becomes distorted 
on approaching the ferromagnetic regime. The dynamic results are discussed 
within the context of canonical chiral magnetic systems.

[1] R. Pocha, et al., Chem. Mater. 12, 2882 (2000). [2] I. Kézsmárki, et al., 
Nat. Mater. 14, 1116 (2015). [3] Á. Butykai, et al., Phys. Rev. B 96, 104430 
(2017).
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The mixed sodium-lithium iron fluorophosphates NaLiFePO4F have been 
synthesized by solid-state route. The crystal and magnetic properties were 
investigated by x-ray diffraction (XRD), vibrating sample magnetometer 
(VSM), and Mössbauer spectroscopy. Structure refinement of NaLiFePO4F 

was analyzed using Fullprof program. The NaLiFePO4F was measured by 
X-ray diffraction (XRD) and was found that the structure of sample was 
orthorhombic with space group of Pnma. Cell parameters of NaLiFePO4F are 
as follows: a0 = 10.9720 Å, b0 = 6.3616 Å, c0 = 11.4267 Å, and V = 797.5837 
Å3. In NaLiFePO4F, 8d positions are occupied by Na ions only, while 4c 
sites are occupied both by Na and Li ions. Also, a six-coordinated Fe2+ 
environment is observed in NaLiFePO4F with distances ranging from 2.079 
to 2.173 Å and an average distance of 2.1052 and 2.1266 Å for Fe1 and Fe2, 
respectively. Temperature dependence of zero-field-cooled (ZFC) and field-
cooled (FC) curves was obtained by VSM under 100 Oe from 4.2 to 295 K. 
We were confirmed the magnetic Néel temperature. Mössbauer spectra of 
NaLiFePO4F have been taken at various temperatures ranging from 4.2 to 
295 K. The Mössbauer spectra of NaLiFePO4F compound exhibits doublets 
with typical for Fe2+ in octahedral sites in fluorophosphates.
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Zn-doped LiFe1-xZnxPO4 (x=0.1, 0.2, 0.3, and 0.5) samples were prepared 
by using the solid-state reaction method. The XRD patterns of samples were 
analyzed using Fullprof program by Rietveld refinement method. The crystal 
structure of LiZnxFe1-xPO4 were determined to be orthorhombic with space 
group Pnma up to x=0.3. The LiZnxFe1-xPO4 compounds with x=0.5 is a 
two-phase mixture of the orthorhombic and monoclinic phase. According to 
the temperature dependence of magnetic susceptibility of LiFe1-xZnxPO4, all 
samples show antiferromagnetic behaviors. The Néel temperature (TN) and 
spin-reorientation temperature (TS) decrease from 48 K, 14 K at x=0.1 to 36 K,  
8 K at x=0.5 with Zn concentrations. This is due to the Fe-O-Fe superex-
change interaction being larger than that of the Fe-O-Mg link. In order to 
investigate the hyperfine interaction of Fe2+ ions in FeO6 octahedral sites, 
Mössbauer spectra of LiFe1-xZnxPO4 have been taken at various tempera-
tures from 4.2 to 295 K. The Mössbauer spectra at temperatures below TN 
were fitted with eight Lorentzians by diagonalizing the 4x4 magnetic and 
quadrupole Hamiltonian. The magnetic hyperfine field (Hhf) and electric 
quadrupole splitting (ΔEQ) values of LiFe0.7Zn0.3PO4 at 4.2 K were deter-
mined to be Hhf = 122.93 kOe, and ΔEQ = 2.75 mm/s. The isomer shift 
(δ) values of the LiZnxFe1-xPO4 were between 1.10 and 1.25 mm/s, indi-
cating the ferrous(Fe2+) at all temperatures. We have found that Zn ions in 
LiFe0.7Zn0.3PO4 induce an asymmetric charge density due to the presence of 
Zn2+ ions at the FeO6 octahedral sites.
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