The Sixth Korean-Polish Joint Seminar on Physical Properties of Magnetic Materials

PROGRAM AND ABSTRACTS

June 12-15, 2000
Poznań
Będlewo

Ośrodek Wydawnictw Naukowych • Scientific Publishers OWN
MAGNETIC PROPERTIES OF $\text{R}_1\text{Y}_2\text{Fe}_5\text{O}_{12}$ (R=Pr, Nd, and Gd) DERIVED BY SOL-GEL METHOD

Jae-Gwang Lee1*, Kwang-Ho Jeong2, Young Rang Uhm3, and Chul Sung Kim3

1Department of Applied Physics, Konkuk University, Chungbuk 380-701, KOREA
2Department of Physics, Yonsei University, Seoul 120-749, KOREA
3Department of Physics, Kookmin University, Seoul 136-702, KOREA

Fine particles of $\text{R}_1\text{Y}_2\text{Fe}_5\text{O}_{12}$ (R = Pr, Nd, and Gd) were prepared by a new salts-routed sol-gel process, and their magnetic properties were investigated by using x-ray diffraction (XRD), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), and Mössbauer spectroscopy. The stock solutions were dissolved in absolute 2-Methoxyethanol (2-MOE). Heat treatments were carried out at 600-800 °C for the thin films for 1h in air, and at 800–1000 °C for powders for 6 h in air. Nano-sized fine particles were dispersed on SiO$_2$/Si(100). The microstructure of the films consisted of spherical grains of 500-1000 Å in size and 60-150 Å in surface roughness (rms). The films annealed at other temperatures exhibited almost the same trend, only differing in coercivity (H_c) and saturated magnetization (M_s) values. The largest coercivity in thin films is 64 Oe for Pr$_1\text{Y}_2\text{Fe}_5\text{O}_{12}$. The H_c increase as doping ionic radius increases from Gd to Pr. Mossbauer spectra for $\text{R}_1\text{Y}_2\text{Fe}_5\text{O}_{12}$ (R = Pr, Nd, and Gd) composed with 2 set of 6-Lorentzians for iron.

Author for correspondence:
Assistance Professor : Jae-Gwang Lee
Address : Department of Applied Physics, Konkuk University,
 Chungbuk 380-701, KOREA

e-mail : jglee@kcuce.cj.konkuk.ac.kr
TEL : +82-441-840-3624
FAX : +82-2-910-4728