

The Sixth
Korean-Polish
Joint Seminar
on Physical
Properties
of Magnetic
Materials

PROGRAM AND ABSTRACTS

June 12-15, 2000 Poznań Będlewo

MAGNETIC PROPERTIES OF R₁Y₂Fe₅O₁₂ (R=Pr, Nd, and Gd) DERIVED BY SOL-GEL METHOD

Jae-Gwang Lee^{1*}, Kwang-Ho Jeong², Young Rang Uhm³, and Chul Sung Kim³

¹Department of Applied Physics, Konkuk University, Chungbuk 380-701, KOREA

²Department of Physics, Yonsei University, Seoul 120-749, KOREA

³Department of Physics, Kookmin University, Seoul 136-702, KOREA

Fine particles of $R_1Y_2Fe_5O_{12}(R=Pr, Nd, and Gd)$ were prepared by a new salts-routed solgel process, and their magnetic properties were investigated by using x-ray diffraction(XRD), atomic force microscopy(AFM), vibrating sample magnetometer(VSM), and Mössbauer spectroscopy. The stock solutions were dissolved in absolute 2-Methoxyethanol(2-MOE). Heat treatments were carried out at 600-800 °C for the thin films for 1h in air, and at 800 – 1000 °C for powders for 6 h in air. Nano-sized fine particles were dispersed on SiO₂/Si(100) The microstructure of the films consisted of spherical grains of 500-1000 Å in size and 60-150 Å in surface roughness(rms). The films annealed at other temperatures exhibited almost the same trend, only differing in coercivity(H_c) and saturated magnetization (M_s) values. The largest coercivity in thin films is 64 Oe for $Pr_1Y_2Fe_5O_{12}$. The H_c increase as doping ionic radius increases from Gd to Pr. Mossbauer spectra for $R_1Y_2Fe_5O_{12}(R=Pr, Nd, and Gd)$ composed with 2set of 6-Lorentzians for iron.

Author for correspondence:

Assistance Professor: Jae-Gwang Lee

Address: Department of Applied Physics, Konkuk University,

Chungbuk 380-701, KOREA

e-mail: jglcc@kcucc.cj.konkuk.ac.kr

TEL: +82-441-840-3624 FAX: +82-2-910-4728