

Fifth International Conference on Nanostructured Materials

Abstracts

August 20-25, 2000 Sendai, Japan

23-P-03-24

MAGNETIC PROPERTIES OF CO-BI FERRITE POWDERS AND THIN FILMS BY A SOL-GEL METHOD

Woo Chul Kim, Chang Woo Lee, and Chul Sung Kim
Department of Physics Kookmin University, Seoul, 136-702, Korea
Email: wckim@phys.kookmin.ac.kr

Ultrafine $CoFe_{1.9}Bi_{0.1}O_4$ powders and thin filems are fabricated by a sol-gel method and their magnetic and structural properties are investigated with an x-ray diffractometer (XRD), a vibrating sample magnetometer (VSM), and Mössbauer spectrometer. Co-Bi ferrite powders which were fired at and above 923 K have only a single-phase spinel structure and behave ferrimagnetically. Powders annealed at 523 - 823 K have a typical spinel structure and are simultaneously paramagnetic and ferrimagnetic in nature. The magnetic behavior of Co-Bi ferrite powders fired at and above 923 K shows that an increase of the annealing temperature yields a decrease of the coercivity and an increase of the saturation magnetization. The maximum coercivity and the saturation magnetization of Co-Bi ferrite powders are $H_C = 1,368$ Oe and $M_S = 75$ emu/g, respectively. ⁵⁷Fe Mössbauer spectra of Co-Bi ferrite have been taken at various temperatures from 13 to 875 K. The isomer shifts indicatesd that the valence states of the Fe ions have a ferric character. Co-Bi ferrite thin films annealed at 723 - 1123 K had a single phase spinel structure without any preferred crystalline orientation.

23-P-03-25

LARGE LOW-FIELD MAGNETORESISTANCE IN ZINC FERRITE/INSULATOR NANOGRANULAR SYSTEMS

P. Chen, 1,2 S. L. Tang, Y. W. Du

¹National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China

² Physics Department of South-West Normal University, Chongqing 400715, China E-mail: ufp @ nju.edu.cn

Large low-field magnetoresistance in $(Zn_{0.5+y}Fe_{2.5-y}O_4)_{1-x}/(Fe_2O_3)_x$ nanogranular systems has been observed in a wide temperature range while the single-phase samples of $Zn_{0.5+y}Fe_{2.5-y}O_4$ shows smaller magnetoresistance (1%-2%). The system (Fe₂O₃ nanoparticle with size 20nm) exhibits a giant magnetoresistance (23%) in magnetic field 5kOe at room temperature. The GMR effect of the samples is attributed to the spin-polarized tunneling in Fe₂O₃ nanoparticle located at boundary of $Zn_{0.5+y}Fe_{2.5-y}O_4$ grains.