Journal of Magnetics 11(1), 12-15 (2006) ## Magnetic and Electronic Properties of Reduced Rutile Ti_{1-x}Mn_xO_{2-δ} Thin Films Kwang Joo Kim*, Young Ran Park, Geun Young Ahn¹, and Chul Sung Kim¹ Department of Physics, Konkuk University, Seoul 143-701, Korea ¹Department of Physics, Kookmin University, Seoul 136-702, Korea (Received 8 December 2005) Magnetic and electronic properties of reduced rutile titanium dioxide (TiO_{2...6}) thin films doped by Mn have been investigated. The present sol-gel-grown semiconducting TiO_{2...6}:Mn films exhibit a ferromagnetic behavior at room temperature for a limited range of Mn content. The Mn-doped films have p-type electrical conductivity with the carrier concentration near 10¹⁹ cm⁻³. The observed room-temperature ferromagnetism is believed to be intrinsic but not related to free carriers such as holes. Oxygen vacancies are likely to contribute to the room-temperature ferromagnetism—trapped carriers in oxygen vacancies can mediate a ferromagnetic coupling between neighboring Mn³⁺ ions. The energy band-gap change due to the Mn doping measured by spectroscopic ellipsometry exhibits a red-shift compared to that of the undoped sample at low Mn content. It is explainable in terms of strong spin-exchange interactions between Mn ion and the carrier. Key words: ferromagnetism, titanium dioxide, oxygen vacancy, Mn-doping