Magnetic Properties and Magnetoresistance in Fe_{1-x} Cr₂S₄ (x=0.0, 0.04, 0.08) Sam Jin Kim¹, Seung-Iel Park¹, Sung Baek Kim¹, Bo Wha Lee², and Chul Sung Kim¹ Department of Physics, Kookmin University, Seoul 136-702, Korea Department of Physics, Hankuk University of Foreign Studies, Yongin, Kyungki, 449-791, Korea Keywords: FeCr₂S₄, Magnetoresistance, Mössbauer spectroscopy, Dynamic Jahn-Teller distortion. ## Abstract Samples of iron deficient polycrystalline Fe_{1-x} Cr₂S₄ (x=0.0, 0.04, 0.08) have been studied with Mössbauer spectroscopy, x-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) and magnetoresistance (MR) measurement. The effects of a small Fe-deficiency and conduction mechanism on FeCr₂S₄ are discussed. The Mössbauer spectra were recorded from 13 K to room temperature. In the temperature range from 13 K to 120 K the asymmetric line broadening is observed and it is believed to result from dynamic Jahn-Teller distortion. Isomer shift value indicates that the charge's state of Fe ions is ferrous in character. The Curie temperature of the samples (x=0.0, 0.04, 0.08), was determined to be 172, 170, 169 K, respectively. However, as Fe deficiency increases, the peaks on MR vs temperature dependence occur at 171, 174, and 186 K for the samples with x=0.0, 0.04, and 0.08, respectively. It is concluded that the conduction mechanism in these systems is different from the double exchange mechanism in a point that there are no mixed iron charge valences.