Cation Distribution and Magnetic Interaction in Y₃Fe_{5-x}Cr_xO₁₂ by Mössbauer Spectroscopy Chul Sung Kim¹, Young Rang Uhm¹, Jae-Gwang Lee², Kwang-Ho Jeong³ ¹Department of Physics, Kookmin University, Seoul 136-702, Korea ²Department of Applied Physics, Konkuk University, Chungbuk 380-701, Korea ³Department of Physics, Yonsei University, Seoul 120-749, Korea Keywords: Y₃Fe_{5-x}Cr_xO₁₂, Garnet, Distribution, ## Abstract The iron containing garnet has been examined by 57 Fe Mössbauer spectroscopy and vibrating sample magnetometer. The results show that the chromium in compounds of the $Y_3Fe_{5-x}Cr_xO_{12}$ ($x=0.0,\ 0.25,\ 0.5,\$ and 1.0) occupied at octahedral site. The substitution of Fe^{3+} by Cr^{3+} on the octahedral site results in much lowering of magnetic ordering temperature. The Mössbauer spectra can be analyses 3set or 4set of six Lorentzian with increasing an amount of Cr^{3+} . It results from the distribution(${}_4C_n$) of Fe^{3+} and Cr^{3+} at octahedral site. The ratios of areas, a, d_1 , d_2 , d_3 , in $Y_3Fe_{4.5}Cr_{0.5}O_{12}$ are 0.33, 0.22, 0.28, 0.14. The saturation magnetization and the coercivity decrease as increasing Cr^{3+} .