Materials Science Forum Vols. 373-376 (2001) pp. 757-760 © 2001 Trans Tech Publications, Switzerland Atomic Migration in Co_{0.9}Mn_{0.1}Fe₂O₄ Prepared by a Sol-Gel Method Woo Chul Kim¹, Young Suk Yi¹, Sung Yong An¹, Seung Wha Lee², Sang Hee Ji³ and Chul Sung Kim¹ ¹Department of Physics Kookmin University, Seoul, 136-702, Korea ²Department of Physics Chungbuk National University, Cheongju 361-173, Korea ³Advanced Institute of Military Science and Technology, Seoul, 139-799, Korea Keywords: Co_{0.9}Mn_{0.1}Fe₂O₄, Sol-Gel, Mössbauer Spectroscopy, Atomic Migration ## Abstract $Co_{0.9}Mn_{0.1}Fe_2O_4$ prepared by a sol-gel method has been studied by Mössbauer spectroscopy and x-ray diffraction. The crystal structure is found to have a cubic spinel structure with the lattice constant of a_0 = 8.384 ± 0.005 Å. The iron ions at both A (tetrahedral) and B (octahedral) sites are found to be in ferric high-spin states. Its Néel temperature T_N is found to be 850 ± 2 K. Debye temperatures for A and B sites found to be Θ_A = 757 ± 5 K and Θ_B = 282 ± 5 K, respectively. Atomic migration from the A to the B sites starts near 400 K and increases rapidly with increasesing temperature to such a degree that 52 % of the ferric ions at the A sites have moved over to the B sites by 700 K.