JOURNAL OF APPLIED PHYSICS VOLUME 91, NUMBER 10 15 MAY 2002

Mössbauer and magnetic properties of Co-Ti substituted barium hexaferrite nanoparticles

Sung Yong An, In-Bo Shim, and Chul Sung Kim^{a)}
Department of Physics, Kookmin University, Seoul 136-702, Korea

Co-Ti substituted M-type hexagonal barium ferrite nanoparticles BaFe₁₂₋₂, Co₂Ti₂O₁₉ ($0 \le x$ ≤1.0) have been prepared by a sol-gel method. Magnetic and structural properties of the powders were characterized with a Mössbauer spectroscopy, vibrating sample magnetometer, x-ray diffraction (XRD), thermogravimetry (TG), and differential thermal analysis (DTA). The decomposition of amorphous hydroxides in the dried precipitate continued until 570 °C, according to a TG-DTA analysis. The result of XRD measurements shows that the a and c lattice parameters increase with increasing x from a=5.882 and c=23.215 Å for x=0.0, to a=5.895 and c=23.215 Å for a=3.895 and a=3.895= 23.295 Å for x = 1.0. The ⁵⁷Fe Mössbauer spectra were fitted by a least-squares technique with four subpatterns of Fe sites in the structure and corresponding to the $4f_2$, $4f_1+2a$, 12k, and 2bsites. The relative spectra areas of BaFe₁₀CoTiO₁₉ at 295 K were 15%, 30%, 50%, and 5% for $4f_2$, $4f_1 + 2a$, 12k, and 2b subspectra, respectively. The 2b site had a very large quadrupole splitting. The isomer shifts indicated that the valence states of the Fe ions were ferric. The magnetization slightly decreases and the coercivity, H_C , drops dramatically from about 5014 to 228 Oe as x increases from 0.0 to 1.0. Co-Ti substituted barium hexaferrite to be controlled to reduce their coercivities with a small decrease of their magnetization. © 2002 American Institute of Physics. [DOI: 10.1063/1.1452203]