

Journal of Magnetism and Magnetic Materials 242-245 (2002) 747-750

www.elsevier.com/locate/jmmm

Neutron and Mössbauer studies of the double perovskite A_2FeMoO_6 (A = Sr and Ba)

Sung Baek Kim^a, Bo Wha Lee^b, Chul Sung Kim^{a,*}

^a Department of Physics, Kookmin University, 861-1 Cheongnung-dong, Sungbuk-ku, Seoul 136-702, South Korea ^b Department of Physics, Hankuk University of Foreign Studies, Kyungki 449-791, South Korea

Abstract

The double perovskite oxide Ba_2FeMoO_6 has a cubic structure with $a_0 = 8.0747$ Å, whereas Sr_2FeMoO_6 has a tetragonal symmetry with $a_0 = 5.5729$ Å and $c_0 = 7.9077$ Å. The unit-cell parameters of the strontium compound increase linearly on increasing the temperature, and the crystal symmetry changes into cubic in the paramagnetic phase (above the Curie temperature T_C). Magnetization measurements show a ferrimagnetic behavior for both materials, with $T_C = 345$ K for Ba_2FeMoO_6 and $T_C = 425$ K for Sr_2FeMoO_6 , respectively. As the temperature increases toward T_C , Mössbauer spectra show line broadening and 1, 6 and 3, 4 linewidth difference because of anisotropic hyperfine field fluctuation. Temperature dependence of anisotropy energy is calculated from the relaxation rate. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Mössbauer spectroscopy; Neutron diffraction; Anisotropy energy