Study on the structure of Fe/MgO catalysts for H₂S wet oxidation

Kwang-Deog Jung*, Oh-Shim Joo and Chul-Sung Kim^a

Eco-Nano Center, Korea Institute of Science and Technology, P.O. Box 131, Seoul, Korea
^a Department of Physics, Kookmin University, Seoul 136-702, Korea

Received 7 May 2002; accepted 7 August 2002

Wet catalytic oxidation was performed at room temperature with 1 wt% Fe/MgO, 4 wt% Fe/MgO, 6 wt% Fe/MgO, 15 wt%/MgO and 30 wt% Fe/MgO catalysts. The 6 wt% Fe/MgO catalyst has a maximum capacity of 2.6 g H_2S/g_{cat} for H_2S removal. The amounts of paramagnetic Fe³⁺ cations are correlated with the H_2S removal capacity of the Fe/MgO catalysts from Mössbauer experiments. It is observed that the deactivation of the 6 wt% Fe/MgO catalyst can be due to the loss of the paramagnetic Fe³⁺ cations during the reaction.

KEY WORDS: wet oxidation; H₂S removal; Fe/MgO catalyst; Mössbauer.