

Journal of Magnetism and Magnetic Materials 254-255 (2003) 568-570

www.elsevier.com/locate/jmmm

Mössbauer studies of iron-doped La_{0.67}Sr_{0.33}Mn_{0.99}⁵⁷Fe_{0.01}O₃ Chul Sung Kim*, In-Bo Shim, Sung Baek Kim, Sung Ro Yoon, Geun Young Ahn

Department of Physics, Kookmin University, Seoul 136-702, South Korea

Abstract

The iron-doped perovskite $La_{0.67}Sr_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ compound has been studied by X-ray diffraction, Mössbauer spectroscopy, and vibrating sample magnetometry. The single phase of the polycrystalline $La_{0.67}Sr_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ powder has been prepared by a water-based sol–gel method. Crystalline $La_{0.67}Sr_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ was a rombohedral structure with lattice parameters $a_0 = 5.480\,\text{Å}$, $\alpha = 60.259^\circ$. Mössbauer spectra of $La_{0.67}Sr_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ have been taken at various temperatures ranging from 20 to 400 K. Analysis of ^{57}Fe Mössbauer spectrum has considered anisotropic hyperfine field fluctuation. Temperature dependence of anisotropy energy is calculated from the relaxation rate.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: CMR; Sol-gel; Mössbauer spectroscopy