## Mössbauer study of Cu<sub>0.5</sub>Fe<sub>0.5</sub>Cr<sub>2</sub>S<sub>4</sub>

Hang Nam Ok, Kyung Seon Baek, and Heung Soo Lee Department of Physics, Yonsei University, Seoul 120-749, Korea

## Chul Sung Kim

Department of Physics, Kookmin University, Seoul 136-702, Korea (Received 15 May 1989)

 ${\rm Cu_{0.5}Fe_{0.5}Cr_2S_4}$  has been studied by Mössbauer spectroscopy and x-ray diffraction. The crystal structure is found to be a cubic spinel with the lattice parameter  $a_0=9.922$  Å. The temperature dependence of both the magnetic hyperfine field and magnetization is explained by the Néel theory of ferrimagnetism using three exchange integrals:  $J_{\rm Fe-Cr}/k_B=-13.7$  K,  $J_{\rm Fe-Fe}/k_B=-8.3$  K, and  $J_{\rm Cr-Cr}/k_B=8.7$  K.