JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 10 15 MAY 2003 ## Magnetic nanoparticles of Fe₂O₃ synthesized by the pulsed wire evaporation method ## Y. R. Uhm and W. W. Kim Nuclear Materials Technology Development Team, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-600, Korea ## S. J. Kim and C. S. Kim Department of Nano-Electro Physics, Kookmin University, Seoul 136-702, Korea ## C. K. Rhee^{a)} Nuclear Materials Technology Development Team, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-600, Korea (Presented on 13 November 2002) Nanoparticles of Fe_2O_3 with a mean particle size of 4-50 nm have been prepared by the pulsed wire evaporation method, and its structural and magnetic properties were studied. From the main peak intensity of x-ray diffraction the amount of γ -Fe₂O₃ and α -Fe₂O₃ in sample is composed about 70% and 30%, respectively. The coercivity (53 Oe) and the saturation magnetization (14 emu/g) are about 20% of those of the bulk γ -Fe₂O₃. A quadrupole line on the center of Mössbauer spectrum represents the superparamagnetic phase of γ -Fe₂O₃ with a mean particle size of 7 nm or below. © 2003 American Institute of Physics. [DOI: 10.1063/1.1558234]