JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 10 15 MAY 2003

## Magnetic nanoparticles of Fe<sub>2</sub>O<sub>3</sub> synthesized by the pulsed wire evaporation method

## Y. R. Uhm and W. W. Kim

Nuclear Materials Technology Development Team, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-600, Korea

## S. J. Kim and C. S. Kim

Department of Nano-Electro Physics, Kookmin University, Seoul 136-702, Korea

## C. K. Rhee<sup>a)</sup>

Nuclear Materials Technology Development Team, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-600, Korea

(Presented on 13 November 2002)

Nanoparticles of  $Fe_2O_3$  with a mean particle size of 4-50 nm have been prepared by the pulsed wire evaporation method, and its structural and magnetic properties were studied. From the main peak intensity of x-ray diffraction the amount of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> and  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> in sample is composed about 70% and 30%, respectively. The coercivity (53 Oe) and the saturation magnetization (14 emu/g) are about 20% of those of the bulk  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>. A quadrupole line on the center of Mössbauer spectrum represents the superparamagnetic phase of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> with a mean particle size of 7 nm or below. © 2003 American Institute of Physics. [DOI: 10.1063/1.1558234]