Mössbauer Studies of ⁵⁷Fe-Doped Anatase TiO₂ Hi Min Lee, Sam Jin Kim, In-Bo Shim, and Chul Sung Kim, Member, IEEE Abstract—Ti_{1-x}⁵⁷Fe_xO₂ compounds were fabricated using the chemical solution method, and the crystal structure and ferromagnetic properties were investigated as a function of doped ⁵⁷Fe concentration. X-ray diffraction patterns showed a pure anatase single phase, without any segregation of Fe into particulates within the instrumental resolution limit. Magnetic properties were characterized by vibrating sample magnetometer and Mössbauer spectroscopy with a ⁵⁷Co(Rh) source. With varying ⁵⁷Fe concentration, we could observe unusual magnetic phenomena in these materials. Doping ⁵⁷Fe into the TiO₂ nonmagnetic semiconductor formed magnetic properties, but the gradual increase of ⁵⁷Fe concentration decreased rapidly the ferromagnetic properties rather than enhanced the ferromagnetic properties. This result reveals an interesting feature, there is a critical limit of ⁵⁷Fe concentration to get ferromagnetic properties at room temperature. Index Terms—Anatase, diluted magnetic semiconductor (DMS), ferromagnetic, Mössbauer spectroscopy.