

Available online at www.sciencedirect.com

Applied Catalysis A: General 267 (2004) 241-244

www.elsevier.com/locate/apcata

Low temperature activation of benzylic C–H bonds with heterogeneous Fe/MgO catalyst under atmospheric molecular oxygen

Seong-Hoon Cho^a, Min-Serk Cheong^b, Kwang-Deog Jung^a, Chul-Sung Kim^c, Sung-Hwan Han^{d,*}

^a Eco-Nano Research Center, Korea Institute of Science and Technology, Hangdang-dong 17, Sungdong-ku, Seoul 133-791, South Korea ^b Department of Chemistry, KyungHee University, Hangdang-dong 17, Sungdong-ku, Seoul 133-791, South Korea

^c Department of Physics, Kookmin University, Hangdang-dong 17, Sungdong-ku, Seoul 133-791, South Korea

^d Department of Chemistry, Hanyang University, Hangdang-dong 17, Sungdong-ku, Seoul 133-791, South Korea

Received in revised form 24 February 2004; accepted 6 March 2004

Available online 24 April 2004

Abstract

The room temperature benzylic oxidation was performed with Fe/MgO catalyst. This Fe/MgO catalyst was prepared by the dissolutionprecipitation method. This heterogeneous catalyst, Fe/MgO, activated the C–H bond with atmospheric molecular oxygen even at 10 °C; its catalytic activity was greatly enhanced by the addition of *N*-hydroxyphthalimide (NHPI) and/or acetaldehyde. © 2004 Elsevier B.V. All rights reserved.

Keywords: C-H activation; Oxidation; Catalysis; Fe/MgO