Mössbauer Studies and Magnetic Properties of $Y_{3-x}Ce_xFe_5O_{12}$

JUN SIG KUM, SAM JIN KIM, IN BO SHIM and CHUL SUNG KIM* Dept. of Physics, Kookmin University, Seoul 136-702, Korea; e-mail: cskim@phys.kookmin.ac.kr

Abstract. Magnetic and crystallographic properites of $Y_{3-x}Ce_xFe_5O_{12}$ (x=0.0, 0.1, and 0.3) have been studied with X-ray diffraction, vibrating sample magnetometer (VSM), and Mössbauer spectroscopy. A small coercivity ($H_c=5.8$ Oe), was obtained for the sample $Y_{2.9}Ce_{0.1}Fe_5O_{12}$, which is comparable to that of an undoped sample $Y_3Fe_5O_{12}$ ($H_c=54.1$ Oe). Mössbauer spectra of $Y_{3-x}Ce_xFe_5O_{12}$ were measured at various absorber temperatures from 4.2 K to Néel temperature. It is found that Debye temperatures of octahedral (16a) and tetrahedral (24d) site for $Y_{2.9}Ce_{0.1}Fe_5O_{12}$ are $\Theta_a=353, \Theta_d=464$ K, respectively, and for $Y_{2.7}Ce_{0.3}Fe_5O_{12}, \Theta_a=380, \Theta_d=444$ K, respectively. The intersublattice a-d superexchange interaction was found to be antiferromagnetic with the strength of $J_{a-d}=-21.42$ k_B , while the intrasublattice interactions a-a, d-d were found to be ferromagnetic with strengths of $J_{a-a}=4.50$ k_B and $J_{d-d}=0.02k_B$, respectively, in the sample $Y_{2.9}Ce_{0.1}Fe_5O_{12}$.

Key words: superexchange interaction, Mössbauer spectroscopy, Debye temperature, coercivity, Ce doped garnet.