phys. stat. sol. (c) 1, No. 12, 3310-3314 (2004) / DOI 10.1002/pssc.200405444

High magnetic performance in Al-substituted $BaFe_{12}O_{19}$ by a wet chemical process

Sung Yong An, Sang Won Lee, Dong Hyeok Choi, In-Bo Shim, and Chul Sung Kim

Dept. of Physics, Kookmin University, Seoul 136-702, Korea

Received 27 June 2004, accepted 14 October 2004 Published online 20 December 2004

PACS 75.30.Gw, 75.50.Vv, 76.80.+y

A wet chemical process has prepared Al-substituted barium ferrite nanoparticles BaFe₁₁AlO₁₉. Structural and magnetic properties of BaFe₁₁AlO₁₉ powers were characterized with an X-ray diffractometer, a vibrating sample magnetometer, and a Mössbauer spectroscopy. The results of X-ray diffraction measurements showed that the BaFe₁₁AlO₁₉ had an *M*-type hexagonal structure with lattice parameters a_0 =5.871, c_0 =23.190 Å and X-ray density ρ_x =5.194 g/cm³. The particle size was 37 nm. Mössbauer spectra of Ba-Fe₁₁AlO₁₉ measured at various absorber temperatures of 15–800 K. Its Curie temperature is found to be 700 ± 5 K. The average hyperfine field $H_{\rm hf}(T)$ of the BaFe₁₁AlO₁₉ shows a temperature dependence of $[H_{\rm hf}(T)-H_{\rm hf}(0)]-0.34(T/T_c)^{5/2}-0.05(T/T_c)^{3/2}$ for $T/T_c<0.7$, indicative of spin-wave excitation. The anisotropy fields H_A was 21.2 kOe and anisotropy constant K_1 was 2.86 × 10⁶ erg/cm³ at room temperature, as determined the law of approach to saturation (LAS). The saturation magnetization was 44.3 emu/g and the coercivity was 7.56 kOe.