Ferromagnetic effects on transition metal doped Ga₂O₃-based semiconductor Seung Wha Lee¹, Yeon Guk Ryu¹, Geun Young Ahn², Seung-Iel Park², and Chul Sung Kim^{2*} Received 27 June 2004, accepted 14 October 2004 Published online PACS 61.66.Fn, 75.50.Pp, 76.80.+y Single phases of polycrystalline $Ga_{2-x}TM_{2x}O_3$ (x=0.00, 0.05, 0.10) powder samples were prepared by a standard solid-state reaction method. The X-ray diffraction patterns of the $Ga_{2-x}TM_xO_3$ (x=0.00, 0.05, 0.10) powders showed no detectable TM phase. All the peaks for the X-ray diffraction patterns of samples belong to the monoclinic (C2/m) lattice of β -Ga₂O₃. The lattice parameters for the $Ga_{1.8}Fe_{0.2}O_3$ and $Ga_{1.8}Mn_{0.2}O_3$ are found to be a_0 = 12.264 Å, b_0 =3.047 Å, c_0 = 5.820 Å, β =103.814° and a_0 = 12.218 Å, b_0 =3.044 Å, c_0 = 5.810 Å, β =103.852° at room temperature. The hysteresis curve at the room temperature for the $Ga_{2-2x}Fe_{2x}O_3$ (x=0.05, 0.10) powders was attributed to a paramagnetic and to a ferromagnetic phase. As the TM doping increased, the magnetization and the ferromagnetic effect were both increased. ¹ Department of Electronics Engineering (The Institute of ITEC), Chungju National University, Chungju 380-702, Korea ²Department of Physics, Kookmin University, Seoul 136-702, Korea