Mössbauer studies of Fe-doped HoMnO₃

Sung Baek Kim and Sam Jin Kim

Department of Physics, Kookmin University, Seoul 136-702, Korea

J.-G. Park

Department of Physics, SungKyunKwan University, Suwon 440-746, Korea

S-W. Cheong

Department of Physics and Astronomy, Rutgers University, New Jersey 08854

Chul Sung Kim^{a)}

Department of Physics, Kookmin University, Seoul 136-702, Korea

(Presented on 2 November 2005; published online 24 April 2006)

The crystallographic and magnetic properties of $\text{HoMn}_{0.99}^{57}\text{Fe}_{0.01}\text{O}_3$ powder have been studied by x-ray diffraction, superconducting quantum interference device measurements, and Mössbauer spectroscopy. It has a hexagonal space group $P6_3cm$ with the lattice constants a_0 =6.139 and c_0 =11.402 Å at room temperature. The magnetic susceptibility follows a Curie–Weiss law behavior, where the Curie–Weiss temperature was determined to be θ_{CW} =-18 K. The Mössbauer spectra below T_N =72 K exhibit the six-line patterns, which coalesce into two lines above T_N . The electric quadrupole splitting value at T_N was ΔE_Q =1.79±0.01 mm/s. An important point can be accessed that the direct observation of a coupling for the electric and magnetic order parameters was possible by Mössbauer spectroscopy. © 2006 American Institute of Physics. [DOI: 10.1063/1.2171054]