Site preference for Zn^{2+} and Ge^{4+} in mixed ferrite $Zn_xGe_{1-x}Fe_2O_4$

Chul Sung Kim, Heung Moon Ko, and Woon Hwa Lee Department of Physics, Kookmin University, Seoul 136-702, Korea

Choong Sub Lee
Department of Physics, National Fisherics University of Pusan, Pusan 608-737, Korea

Small amounts of Zn^{2+} and Ge^{4+} substituting for $GeFe_2O_4$ and $ZnFe_2O_4$, can efficiently increase the Neél temperature, thereby can be applied to magnetic device. The site preference of Fe^{2+} and Fe^{3+} in mixed ferrite $Zn_xGe_{1-x}Fe_2O_4$ (X=0.6) with Mössbauer absorption and x-ray diffraction was studied. Analysis of x-ray diffraction indicates that the lattice constant is not in accord with Vegard's law, suggesting Fe^{2+} and Fe^{3+} are located not only at B sites but at A sites. It is found that Debye temperatures of $GeFe_2O_4$ and $ZnFe_2O_4$ are 380 ± 5 K and 361 ± 5 K from Mössbauer measurements. Zn^{2+} and Ge^{4+} randomly occupy A site or B site. Mössbauer spectra of $Zn_{0.6}Ge_{0.4}Fe_2O_4$ reveal line broadening with increasing temperature and the relaxation effect at low temperature.