

Relation between Mössbauer spectroscopy and geometrical frustration factors in $MCr_{1.98}^{57}Fe_{0.02}O_4$ (M = Co, Zn)

Kang Ryong Choi, Taejoon Kouh, Sam Jin Kim, and Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 136-702, Korea

Received 7 May 2007, revised 20 October 2007, accepted 22 October 2007 Published online 12 December 2007

PACS 75.50.Ee, 75.50.Gg, 76.80.+y

In order to elucidate the role of Cr ions in MCr₂O₄(M = Co, Zn) exhibiting geometrically frustration and multiferroic property, we have substituted a small amount of Fe ions for Cr sites and investigated the magnetic behavior of Fe ions with Mössbauer spectroscopy. The crystal structure was found to be single-phase cubic spinel with space group of *Fd3m*. The lattice constants *a*₀ and the internal structural parameter (*x*) of the oxygen were determined to be 8.340, 8.331 Å and 0.261 and 0.260, respectively. The Mössbauer absorption spectra at 4.2 K show that the well-developed two sextets are superposed with small difference of hyperfine fields(*H*_{hf}). The hyperfine fields of CoCr_{1.98}⁵⁷Fe_{0.02}O₄ and ZnCr_{1.98}⁵⁷Fe_{0.02}O₄ were determined to be 490 ~ 480 kOe and 460 ~ 450 kOe, respectively. Isomer shift values (δ) of the two sextets are found to be 0.33 ~ 0.35 mm/s relative to those of Fe metal, which are consistent with the high spin Fe³⁺ charge state. From the results of Mössbauer measurement, it is suggested that Cr³⁺ ions have two different magnetic sites, and there is a correlation between hyperfine fields and degree of magnetic geometrical frustration.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Cubic spinel chromites material offers a good realization of geometrically frustration [1–4]. ZnCr₂O₄ was shown to be geometrically frustrated magnet [5, 6] and CoCr₂O₄ was investigated for multiferroic property [7-9]. ZnCr₂O₄ has strong antiferromatnetic interaction because Zn²⁺ have zero spin at A site and Cr³⁺ is located at the B site of the spinel structure with S = 3/2 spins on a lattice of corner-sharing tetrahedral(three 3*d* electrons occupy the t_{2g} triplet). However, CoCr₂O₄ has normal ferrimagnetic behaviors by A-B magnetic interactions between the magnetic atoms on the A sites and the B sites. Our research is to elucidate the role of the Cr ion in the geometrical frustration by replacing the Cr ions in the MCr₂O₄ (M = Co, Zn) material with Fe ions. We have substituted a small amount of Fe ions for Cr sites and investigated the magnetic behavior of Fe ions with Mössbauer spectroscopy. The similar ionic radii of Fe³⁺ (0.64 Å) and Cr³⁺ (0.63 Å) mean that lattice distortion effects of the substitution may be ignored.