Hyperfine interaction analysis on the multiferroic properties of Fe doped MnWO₄ using Mössbauer spectroscopy Dong Hyeok Choi and Chul Sung Kim^{a)} Department of Physics, Kookmin University, Seoul 136-702, Republic of Korea (Presented on 9 November 2007; received 13 September 2007; accepted 4 January 2008; published online 14 March 2008) We have investigated the hyperfine interaction and multiferroic properties of Fe doped $\mathrm{Mn_{0.98}Fe_{0.02}WO_4}$ polycrystalline powders using Mössbauer spectroscopy. The crystal structures are determined to be monoclinic, space group P2/c, with the lattice constants a=4.827 Å, b=5.756 Å, c=4.994 Å, and $\beta=88.86^\circ$. The Mössbauer spectra below Néel temperature (15 K) show the eight-absorbed spectrum lines. It suggests that the electric quadrupole interaction is as large as the magnetic dipole interaction. From the Mössbauer spectra of 4.2 K, we have obtained hyperfine field (H_{hf}) to be 72.1 kOe, quadrupole splitting (ΔE_Q) to be 2.0 mm/s, and the asymmetry parameter (η) of an electric field gradient (EFG) to be 0. However, η at 9 K is 0.30. Also, the observed EFG is asymmetric in the noncollinear spin spiral configuration ranging from 9 to 13 K, indicating that EFG shows the indirect evidence of a spontaneous polarization. © 2008 American Institute of Physics. [DOI: 10.1063/1.2838460]