Synchrotron radiation spectroscopy study of $FeCr_2X_4$ (X=S and Se)

J.-S. Kang, $^{1,2,a)}$ G. Kim, 1 H. J. Lee, 1 H. S. Kim, 1 D. H. Kim, 1 S. W. Han, 2 S. J. Kim, 3 C. S. Kim, 3 Hangil Lee, 4 J.-Y. Kim, 4 and B. I. Min 5

Department of Physics, The Catholic University of Korea, Bucheon 420-743, Republic of Korea

²CSCMR, Seoul National University, Seoul 151-742, Republic of Korea

(Presented on 8 November 2007; received 9 September 2007; accepted 28 December 2007; published online 25 March 2008)

Electronic structures of FeCr_2X_4 (X=S and Se) have been investigated by employing soft-x-ray absorption spectroscopy and soft-x-ray magnetic circular dichroism (XMCD). It is found that FeCr_2S_4 and FeCr_2S_4 have similar electronic structures. The valence states of Cr and Fe ions are nearly trivalent (Cr^{3+}) and divalent (Fe^{2+}), respectively. The Fe 3d states are strongly hybridized to the X p states. The Fe and Cr 2p XMCD study provides evidence for the antiparallel alignment between Cr and Fe spins and the strong hybridization between the Fe 3d and X p electrons.

© 2008 American Institute of Physics. [DOI: 10.1063/1.2839617]

³Department of Physics, Kookmin University, Seoul 136-702, Republic of Korea

⁴Pohang Accelerator Laboratory (PAL), POSTECH, Pohang 790-784, Republic of Korea

⁵Department of Physics, POSTECH, Pohang 790-784, Republic of Korea