The Site Dependence on Exchange Interaction of the Fe Spinel Bae Soon Son, Sam Jin Kim and Chul Sung Kim* Department of Physics, Kookmin University, Seoul 136-702 Myung-Hwa Jung and Younghun Jo Quantum Material Research Team, Korea Basic Science Institute, Daejeon 305-333 (Received 20 December 2007) The Fe spinel FeCr₂S₄ and FeIn₂S₄ were studied on the site dependence microscopic interaction. FeCr₂S₄ exhibits cubic spinel structure of Fd3m, with Fe atoms occupying A site and Cr atoms occupying octahedral (B) site, whereas FeIn₂S₄ shows an inverse spinel, with In atoms occupying both tetrahedral (A) and octahedral (B) sites. The determined lattice constants, for FeCr₂S₄ and FeIn₂S₄, were $a_0 = 9.976$, 10.618 Å, respectively. The Néel temperatures (T_N) were found to be 175 and 15 K for the FeCr₂S₄ and FeIn₂S₄, respectively, by Mössbauer spectroscopy and magnetization measurement. It can be understood that the strength of inter-sublattice exchange interaction Fe²⁺(A)-S²⁻-Fe²⁺(B) is stronger than that of the intra-sublattice exchange interaction Fe²⁺(B)-S²⁻-Fe²⁺(B). The FeCr₂S₄ shows a single line resonance spectrum with an isomer shift of 0.56 mm/s at room temperature, while FeIn₂S₄ has an isomer shift of 0.74 mm/s and an electric quadrupole splitting (ΔE_Q) of 3.22 mm/s. The charge state of Fe ions is in ferrous (Fe²⁺) for the both samples. We interpret that the presence of the large ΔE_Q is attributed to the trigonal field at the octahedral site, due to Fe²⁺ ions occupying to octahedral B site. PACS numbers: 71.70.Gm, 76.80.+y Keywords: Fe spinel, Mössbauer, Exchange interaction