

Available online at www.sciencedirect.com

iournal of

Journal of Magnetism and Magnetic Materials 320 (2008) e853-e856

www.elsevier.com/locate/jmmm

Room-temperature ferromagnetic properties and Mössbauer investigation of the 0.7FeTiO₃–0.3Fe₂O₃ solid solution

Woochul Kim^a, Sung Wook Hyun^a, Dong Gyun You^a, Sunghyun Yun^b, Chul Sung Kim^{a,*}

^aDepartment of Physics, Kookmin University, 861-1 Cheongnung-dong, Songbuk-gu, Seoul 136-702, South Korea

^bDepartment of Physics, Gunsan National University, Gunsan 573-701, South Korea

Available online 22 May 2008

Abstract

The 0.7FeTiO_3 - $0.3\text{Fe}_2\text{O}_3$ solid solution were prepared by slow cooling and quenching heat treatments and studied by X-ray diffraction, Mössbauer spectroscopy, and vibrating sample magnetometer (VSM). The crystal structure of samples were found to be rhombohedral structure with the lattice constants of the slow-cooled sample $a = 5.082\,\text{Å}$ and $c = 13.945\,\text{Å}$, and those of the quenched sample $a = 5.085\,\text{Å}$ and $c = 13.964\,\text{Å}$. Mössbauer spectra of two samples were taken at various temperatures ranging from 4.2 to 400 K and anomalous absorption curves are observed. Mössbauer spectra was fitted to three magnetic components correspond to Fe³⁺ and Fe²⁺ in A and B sublattices. At 4.2 K, the magnetic hyperfine fields were $H_{\rm hf} = 512$, 481, and 309 kA/m for the slow-cooled sample and 512, 479, and 305 kA/m for the quenched sample, respectively. The Mössbauer spectra below the Néel temperature, $T_{\rm N}$, reveal line broadening accompanying relaxation effects and intensity ratio different from usual powder pattern, indicating preferred spin orientation. The Néel temperature, $T_{\rm N}$, was determined to be 380 K for the slow-cooled sample and 400 K for the quenched sample. The temperature dependence of the magnetization taken in zero-field-cooling (ZFC) and field-cooling (FC) condition of the slow-cooled and quenched samples exhibits the great irreversibility between ZFC and FC magnetization. Magnetization measurements have shown ferromagnetic hysteresis loops at room temperature.

© 2008 Elsevier B.V. All rights reserved.

PACS: 75.50.P; 76.80. + y

Keywords: Magnetic semiconductor; Mössbauer spectroscopy; Iron oxide