Ferromagnetism in a Mixture of Antiferromagnetic FeTiO₃ and α -Fe₂O₃ as Observed by Using Mössbauer Spectroscopy

Woochul Kim, Il Jin Park and Chul Sung Kim* Department of Physics, Kookmin University, Seoul 136-702

(Received 12 December 2007)

Solid solutions (1-x)FeTiO₃-xFe₂O₃ of different compositions (x=0.0, 0.1, 0.3, 0.5 and 1.0) were prepared by using a standard ceramic processing method and were studied by using X-ray diffraction, Mössbauer spectroscopy and vibrating sample magnetometer (VSM). The crystal samples were found to have a rhombohedral structure. The lattice parameters (a and c) decreased linearly with increasing Fe concentration (x) and followed Vegard's law approximately. For the sample with x=0.1, the Mössbauer spectrum at room temperature was obtained by using the asymmetry two doublet corresponding to Fe²⁺ and Fe³⁺. On the other hand, for the x=0.3 and 0.5 samples, an anomalous six-line absorption curve was observed. The Mössbauer spectra at 4.5 K for the sample with x=0.5 was fitted to three six-line hyperfine patterns with magnetic hyperfine fields of $H_{hf}=554.4$, 528.4 and 438.5 kOe and isomer shifts of $\delta=0.43$, 0.59 and 0.89 mm/s. The values of the isomer shifts show that for all temperature ranges, the states are ferric (Fe³⁺) and ferrous (Fe²⁺). The slopes of the hyperfine magnetic fields depended on the temperature change at temperatures between 240 and 295 K, suggesting that a spin-rotation transition takes place. The Néel temperature and the Debye temperature were found to be 575 K and 355 K, respectively. The magnetic hysteresis curve measurements showed a ferromagnetic behavior at room temperature.

PACS numbers: 75.50.P, 76.80.+y

Keywords: Magnetic semiconductor, Mössbauer spectroscopy, Iron oxides