Study of Atomic Migration in CoFe₂O₄ Using the Mössbauer Effect

Chul Sung Kim, Seung Iel Park, Young Lang Um and Young Jong LEE

Department of Physics, Kookmin University, Seoul 136-702

Seung Wha LEE and Sung Real Hong

Department of Physics, Chungbuk National University, Cheongju 360-763

(Received 5 March 1994)

Slowly cooled $CoFe_2O_4$ has been investigated over a temperature range from 13 to 880 K using the Mössbauer technique. The spectra have been fitted with two sextets in the ferrimagnetic state. X-ray diffraction shows that $CoFe_2O_4$ has a inverse spinel structure and a lattice constant, a_0 , of 8.381 ± 0.005 Å. The iron ions at both A (tetrahedral) and B (octahedral) sites are found to be in ferric high-spin states. The Néel temperature T_N is found to be 870 ± 3 K. The Debye temperatures for the A and B sites are found to be 735 ± 5 K and 248 ± 5 K, respectively. Atomic migration from the A to the B sites starts near 400 K and increases rapidly with increasing temperature to such a degree that 57% of the ferric ions at the A sites have moved over to the B sites by 780 K.