Investigation of the Magnetic Properties of Ni_{0.7}Fe_{0.3}Ga₂S₄

Bo Ra Myoung, Sam Jin Kim and Chul Sung Kim* Department of Physics, Kookmin University, Seoul 136-702 (Received 18 November 2009, in final form 21 January 2010)

We have studied the magnetic properties of Ni_{0.7}Fe_{0.3}Ga₂S₄ with Fe substituted at the Ni sites by using an X-ray diffractometer (XRD), a superconducting quantum interference device (SQUID) magnetometer, and a Mössbauer spectrometer. The polycrystalline sample of Ni_{0.7}Fe_{0.3}Ga₂S₄ is found to be a single phase of the trigonal structure with a space group of P-3m1. The structural parameters of the sample are obtained by using a Reitveld refinement with lattice constants of $a_0 = 3.640$ Å and $c_0 = 12.020$ Å. The bond length between Fe and S ions is about 2.420 Å, which suggests a short-range ordering with the frustration effect. From the Mössbauer spectra, the magnetic hyperfine field and the electric quadrupole interaction are estimated to be $H_{\rm hf} = 124.2$ kOe, and $\Delta E_Q = 2.10$ mm/s, respectively, at 4.2 K. The charge state of the Fe ions is ferrous (Fe²⁺) from the value of the isomer shift, $\delta = 0.66$ mm/s, at room temperature. The spin quantum number of Ni_{0.7}Fe_{0.3}Ga₂S₄ is determined to be S = 3/2, while it is S = 1 for NiGa₂S₄ and S = 2 for FeGa₂S₄. This indicates an increase an spin-orbital interactions with increasing Fe.

PACS numbers: 31.30.Gs, 74.62.Dh, 75.50.Ee

Keywords: Antiferromagnetic, Mössbauer spectroscopy, Spin-spin correlation.

DOI: 10.3938/jkps.56.755