Mössbauer Studies on Ferrimagnetic FeCr_{1.7}Al_{0.3}S₄

Chin Mo Kim and Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 136-702

(Received 17 November 2009, in final form 7 January 2010)

Polycrystalline Al-doped FeCr_{1.7}Al_{0.3}S₄ has been studied with X-ray diffraction, magnetization, and Mössbauer spectroscopy measurements. The crystal structure was found to be a cubic spinel with a space group of Fd-3m, and the lattice constant was 10.004 Å. The magnetic susceptibility followed the Curie-Weiss law with a positive $\theta_{cw} = 114$ K, showing a ferrimagnetic behavior. The value of the magnetization at 5 K was found to be 1.12 μ_B . Mössbauer spectra of FeCr_{1.7}Al_{0.3}S₄ were obtained at various temperatures ranging from 4.2 to 300 K. Both the magnetic hyperfine field $(H_{\rm hf})$ and the polar angle (θ) reached their maximum values at 60 K and had similar temperature dependences. However, the azimuthal angle (φ) remained constant at temperatures below 60 K and started increasing with temperature at temperatures above 60 K. From the Mössbauer spectra of FeCr_{1.7}Al_{0.3}S₄ at 4.2 K, we obtained the following Mössbauer parameters: $H_{\rm hf} = 128$ kOe, $\Delta E_Q = 2.42$ mm/s, $\theta = 20.0^{\circ}$, $\varphi = 0.0^{\circ}$, $\eta = 0.8$, and R = 2.8. The isomer shift of FeCr_{1.7}Al_{0.3}S₄ at 4.2 K was 0.83 mm/s relative to the Fe metal, which is consistent with the Fe²⁺ valence state.

PACS numbers: 61.10.Nz, 75.50.Gg, 76.80.+y

Keywords: Mössbauer, Chalcogenide spinel, Ferrimagnetic

DOI: 10.3938/jkps.56.823