The geometrical frustration properties of the antiferromagnetic $Ni_{1-x}Fe_xGa_2S_4$ (0.01 $\leq x \leq 1$)

Bo Ra Myoung, ¹ Sam Jin Kim, ¹ Bo Wha Lee, ² and Chul Sung Kim, ¹ Department of Physics, Kookmin University, Seoul 136-702, South Korea, ² Department of Physics, Hankuk University of Foreign Studies, Yongin, Kyungki 449-791, South Korea

(Presented 22 January 2010; received 31 October 2009; accepted 5 January 2010; published online 21 April 2010)

Ni_{1-x}Fe_xGa₂S₄ (0.01 \leq x \leq 1) has been studied by x-ray, Mössbauer spectroscopy, and superconducting quantum-interference device (SQUID) magnetometer. The samples were prepared by a standard solid-state reaction method. The crystal has a trigonal structure with space group P-3m1. The lattice constants a_0 , c_0 and bond length $d_{\text{Fe-S}}$ increase linearly with increasing Fe concentration. The Néel temperature (T_N) for Ni_{1-x}Fe_xGa₂S₄ (0.01 \leq x \leq 1) increases with increase in Fe concentration, which is due to the short-range ordering in the undoped sample which changes into the long-range ordering with increase in Fe. The quadrupole splitting ΔE_Q increases with Fe substitution in Mössbauer spectra in Ni_{1-x}Fe_xGa₂S₄ (0.01 \leq x \leq 1) at 4.2 K. We report that the spin configuration for geometrically frustrated Ni_{1-x}Fe_xGa₂S₄ (0.01 \leq x \leq 1) at 4.2 K has fluctuating incommensurate state by Mössbauer spectra spectroscopy. © 2010 American Institute of Physics. [doi:10.1063/1.3364052]