MAGNETIC PROPERTIES OF Sro.75 Ba 0.25 Fe 12 19 HEXAFERRITE Chul Sung KIM, Seung Iel PARK and Young Rang UM Department of Physics, Kookmin University, Seoul 136-702, Korea Jae Yun PARK Department of Materials Science and Engineering, University of Incheon, Incheon 402-749, Korea In Bo SHIM and Young Jei OH Division of Ceramics, Korea Institute of Science and Technology, Seoul 130-650, Korea Sr_{0.75}Ba_{0.25}Fe₁₂O₁₉ has been studied by x-ray, TEM, Mössbauer spectroscopy and vibrating sample magnetometry. The crystal structure is the M-type hexagonal and lattice parameters are found to be a₀ = 5.878 A and c₀ = 23.111 A. Mössbauer spectra of Sr_{0.75}Ba_{0.25}Fe₁₂O₁₉ have been taken at various temperature ranging from 13 to 780 K. A fitting model employing five independent components, each a sextet, yielded the magnetic hyperfine field and guadrupole splitting of each site as a function of sample temperature. The isomer shifts indicate that the charge states of the Fe ions have ferric characters. The Curie temperature, T_c, are determined to be 765 K, which is in fairly good agreement with that determined from VSM data. This T_c is higher than the typical M-type hexaferrites(730 K).