IOP Publishing Nanotechnology Nanotechnology 22 (2011) 045703 (6pp) doi:10.1088/0957-4484/22/4/045703 ## Magnetic nanoparticle-based separation of metallic and semiconducting carbon nanotubes Hyung Joon Kim¹, Sungsic Hwang¹, Jeseung Oh¹, Young Wook Chang¹, Eun-Kyung Lim², Seungjoo Haam², Chul Sung Kim³ and Kyung-Hwa Yoo^{1,4} - ¹ Nanomedical Graduate Program, Yonsei University, Seoul 120-749, Republic of Korea - ² Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Republic of Korea - ³ Department of Physics, Kookmin University, Seoul 136-702, Republic of Korea - ⁴ Department of Physics, Yonsei University, Seoul 120-749, Republic of Korea E-mail: khyoo@yonsei.ac.kr Received 3 August 2010, in final form 6 November 2010 Published 20 December 2010 Online at stacks.iop.org/Nano/22/045703 ## Abstract We report a simple and scalable method for the separation of semiconducting single-walled carbon nanotubes (SWNTs) from metallic SWNTs using magnetic nanoparticles (MNPs) functionalized with polycationic tri-aminated polysorbate 80 (TP80). MNPs–TP80 are selectively adsorbed on acid-treated semiconducting SWNTs, which makes the semiconducting SWNTs be highly concentrated to over 95% under a magnetic field. Almost all the field effect transistor network devices, which were fabricated using separated semiconducting SWNTs, exhibited a p-type semiconducting behavior with an on/off ratio of higher than 10⁴. S Online supplementary data available from stacks.iop.org/Nano/22/045703/mmedia (Some figures in this article are in colour only in the electronic version)