Study on the Geometrically-frustrated Magnet $Ni_{1/2}Fe_{1/2}Ga_2S_4$

Bo Ra Myoung, Chul Sung Kim and Sam Jin Kim*

Department of Physics, Kookmin University, Seoul 136-702, Korea

Young-Jei OH

Korea Institute of Science and Technology, Seoul 136-791, Korea

(Received 2 December 2010, in final form 6 January 2011)

We have investigated the spin-lattice relation in geometrical frustration by using an X-ray diffractometer (XRD), a superconducting quantum interference device (SQUID) magnetometer, and a Mössbauer spectroscopy. The crystal structure of the Ni_{1/2}Fe_{1/2}Ga₂S₄ studied here, was determined to be a 2-D triangular lattice structure of P-3m1 with lattice parameters of $a_0 = 3.650$ Å, and $c_0 = 12.040$ Å. From the temperature dependence of the molar susceptibility in an applied high field of H = 5 T measured by using a SQUID magnetometer, Ni_{1/2}Fe_{1/2}Ga₂S₄ had a strongly antiferromagnetic behavior due to the Curie-Weiss temperature $\theta_W = -71.6$ K. The freezing temperature at the onset of the spin-freezing transition was $T_f = 10.0$ K under a low field of H = 100 Oe, similar to a spin glass system, and the frustration parameter was $f(\theta_W/T_N) = 3.25$. From the Mössbauer spectrum at 4.2 K, we noticed a severely distorted 8-line shape coming from spin fluctuations and an incommensurate spin structure. The freezing temperature ($T_f = 10$ K) related to the electric spin disorder was different from the Néel temperature ($T_N = 22$ K) influenced by microscopic disorder of the nuclear spin due to a strained spin caused by the distorted lattice from geometrical frustration, as indicated in the Mössbauer spectra.

PACS numbers: 61.10.-i, 31.30.Gs, 74.62.Dh, 75.50.Ee

Keywords: Antiferromagnet, Mössbauer spectroscopy, Spin-spin correlation

DOI: 10.3938/jkps.58.252