Journal of the Korean Physical Society, Vol. 58, No. 3, March 2011, pp. 472~475

Neutron Diffraction and Mössbauer Studies of LiFePO₄

Chan Hyuk Rhee, In Kyu Lee, Seung Je Moon, Sam Jin Kim and Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 136-702, Korea

(Received 23 December 2010, in final form 19 January 2011)

The crystal structure of LiFePO₄ has been determined to be orthorhombic (Pnma) from neutron diffraction measurements. The temperature dependence of the magnetization was measured by using a SQUID magnetometer. The microscopic interaction was investigated with ⁵⁷Fe Mössbauer spectroscopy. At temperatures below $T_N = 51$ K, LiFePO₄ exhibited an anti-ferromagnetic behavior while at temperatures below 23 K, we observed abrupt increases in the magnetization and the magnetic hyperfine field (H_{hf}). The electric quadrupole splitting (ΔE_Q) reached its maximum value at 23 K and decreased steadily with decreasing temperature below 23 K. This indicated that the orbital angular momentum L was quenched by the strong crystalline field in the asymmetric octahedral structure at temperatures above 23 K. ΔE_Q decreased due to spin-orbit coupling, and the orbital angular moment contribution enhanced H_{hf} at temperatures below 23 K.

PACS numbers: 61.12.Ld, 71.70.Ej, 75.50.Ee, 76.80.+y Keywords: Mössbauer, Neutron diffraction, Spin-orbit coupling, LiFePO₄ DOI: 10.3938/jkps.58.472