Phase transition studies of sodium deintercalated $Na_{2-x}FePO_4F$ ($0 \le x \le 1$) by Mössbauer spectroscopy

In Kyu Lee, In-Bo Shim, and Chul Sung Kim^{a)}
Department of Physics, Kookmin University, Seoul 136-702, Republic of Korea

(Presented 17 November 2010; received 24 September 2010; accepted 8 December 2010; published online 5 April 2011)

The phase transition in sodium deintercalated Na_{2-x}FePO₄F ($0 \le x \le 1$) polycrystalline samples was studied by x-ray diffraction and Mössbauer spectroscopy. Sodium deintercalated samples were obtained by chemical deintercalation of pure Na₂FePO₄F. From the refined x-ray diffraction patterns, the crystalline structure of Na₂FePO₄F was determined to be orthorhombic with the space group Pbcn. The structure of fully sodium deintercalated NaFePO₄F is identical to that of pure Na₂FePO₄F, differing only in the cell parameters. The changes in the unit cell parameters and atomic positions in $Na_{2-x}FePO_4F$ (x=0, 1) samples originated from a Na_2 ion deficiency in the interlayer spaces. The room-temperature Mössbauer spectra of $Na_{2-x}FePO_4F$ (x = 0, 1) were fitted with one set of the Fe^{2+/3+} doublets. A decrease in the absorption area of Fe²⁺ in Na₂FePO₄F with increasing sodium deintercalation was observed in the Mössbauer spectra of Na2-,FePO4F, whereas the area of the Fe³⁺ doublet in NaFePO₄F increased. The large value of ΔE_0 for the Fe²⁺ doublet phase was due to the asymmetric charge distribution of FeO₄F₂ arising from different lattice and valence state contributions. © 2011 American Institute of Physics. [doi: 10.1063/1.3561798]