Mössbauer Studies of Spin-Orbit Coupling in LiCo_{0.99}⁵⁷Fe_{0.01}PO₄

Chan Hyuk Rhee, Sam Jin Kim, and Chul Sung Kim

Department of Physics, Kookmin University, Seoul 136-702, Korea

The polycrystalline $\text{LiCo}_{0.99}^{57} \text{Fe}_{0.01} \text{PO}_4$ was synthesized by solid-state reaction method. The crystal structure was determined to be orthorhombic with a space group of Pnma by x-ray diffractometer (XRD). The temperature dependence of the magnetization was investigated by superconducting quantum interference device (SQUID) magnetometer. Although $\text{LiCo}_{0.99}^{57} \text{Fe}_{0.01} \text{PO}_4$ showed a typical anti-ferromagnetic behavior at temperatures below $T_{\text{N}}=23~\text{K}$, a rapid increase in magnetization was observed at temperatures below 9 K. The microscopic magnetic properties of $\text{LiCo}_{0.99}^{57} \text{Fe}_{0.01} \text{PO}_4$ were characterized by $^{57} \text{Fe}$ external field Mössbauer spectroscopy. At temperatures below 9 K, the magnetic hyperfine field (H_{hf}) showed a rapid increase, while the electric quadrupole splitting (ΔE_{Q}) decreased rapidly. The H_{hf} and ΔE_{Q} under external field of 4.8 T changed significantly compared to the value without external magnetic field. These are originated from orbital angular moment contribution by spin-orbit coupling at temperatures below 9 K, while orbital angular moment is quenched by the crystalline field due to distorted $\text{CoO}_6(\text{FeO}_6)$ asymmetric structure at temperatures above 9 K.

Index Terms-LiCoPO₄, Mössbauer spectroscopy, spin-orbit coupling, olivine.