Investigation of Fe₃O₄ Core/Mesoporous SiO₂ Shell Microspheres Based on Mössbauer Spectroscopy

Yong Hui Li, In-Bo Shim, and Chul Sung Kim

Department of Physics, Kookmin University, Seoul 136-702, Korea

The Fe₃O₄ core/mesoporous SiO₂ shell (Fe₃O₄@SiO₂) microspheres were prepared by a solvothermal reaction method. The crystal structure was determined to be cubic spinel with lattice constant a_0 of 8.395 Å for core Fe₃O₄. Based on transmission electron microscopy (TEM) measurements, the core of Fe₃O₄ particle diameter is 300–500 nm and shell thickness of 50 nm. From the magnetic hysteresis curves measured under 10 kOe, magnetization of Fe₃O₄ and Fe₃O₄@SiO₂ microspheres is determined to be 77.0 and 17.0 emu/g, respectively, at room temperature. The M-T curve confirmed that the magnetic moment transition temperature was around 110 K in Fe₃O₄ and 32 K in Fe₃O₄@SiO₂. The Mössbauer spectra of the samples were analyzed with three six-line hyperfine patterns. It is noticeable that from the Mössbauer absorption area ratio between A(8a) and B(16d) sites, the area ratio of sextet increases from 40:60 for Fe₃O₄ to 56:44 for Fe₃O₄@SiO₂, respectively. The Fe valence state of A site was determined to be ferric, and $B(B_1, B_2)$ site was ferric (B_1 site) and ferrous (B_2 site) from the isomer shift values.

Index Terms—Fe₃O₄@SiO₂, Mössbauer spectroscopy, transition temperature, transmission electron microscopy (TEM).