Local Magnetic Properties of Spinel $Cd_{0.9}M_{0.1}Fe_2O_4(M=Zn,Ni)$ Investigated by Using External Magnetic Field Mössbauer Spectrometry

Woochul Kim, Sung Wook Hyun, Taejoon Kouh and Chul Sung Kim*
Department of Physics, Kookmin University, Seoul 136-702, Korea

Eun Joo Hahn

Department of Physics, Suwon University, Hwaseong 445-743, Korea

(Received 23 December 2010, in final form 18 October 2011)

Cd_{0.9}M_{0.1}Fe₂O₄ (M = Zn, Ni) ferrites, prepared by using a solid state reaction method, have been studied by using X-ray diffraction and Mössbauer spectroscopy. The lattice constants are determined to be $a_0 = 8.686$ Å for Cd_{0.9}Zn_{0.1}Fe₂O₄ and 8.664 Å for Cd_{0.9}Ni_{0.1}Fe₂O₄ with a cubic spinel structure. Zero-field Mössbauer spectra of the samples were taken at various temperatures ranging from 4.2 to 295 K. A line broadening arising from the relaxation effect was observed at temperatures below the Néel temperature (T_N), which is 18 K for Cd_{0.9}Zn_{0.1}Fe₂O₄ and 40 K for Cd_{0.9}Ni_{0.1}Fe₂O₄. The magnetic hyperfine fields, obtained by fitting Mössbauer spectra with two magnetic components, of Cd_{0.9}Zn_{0.1}Fe₂O₄ and Cd_{0.9}Ni_{0.1}Fe₂O₄ were $H_{hf}(A) = 461$ kOe, $H_{hf}(B) = 492$ kOe, and $H_{hf}(A) = 485$ kOe, $H_{hf}(B) = 503$ kOe, respectively. The isomer shift δ values at room temperature were 0.24 \sim 0.25 mm/s, indicating that the valence state of Fe ions is ferric in tetrahedral and octahedral coordination. Their magnetic behaviors at low temperatures were also investigated with an external-field Mössbauer spectrometer at 48 kOe and showed localized spincanting at both A and B sites with the average canting angles of 65° and 54° for Cd_{0.9}Zn_{0.1}Fe₂O₄ and of 51° and 43° for Cd_{0.9}Ni_{0.1}Fe₂O₄ at 4.2 K.

PACS numbers: 75.50.Ee, 75.50.Gg, 76.80.+y

Keywords: Mössbauer spectroscopy, Ferrite, Spin canting

DOI: 10.3938/jkps.59.3380