

Available online at www.sciencedirect.com

Ceramics International 37 (2011) 3389-3395

www.elsevier.com/locate/ceramint

Mössbauer spectroscopic and chromaticity analysis on colorative mechanism of celadon glaze

Jong-Young Kim^{a,*}, Hyunggoo No^a, A. Young Jeon^a, Ungsoo Kim^a, Jae-Hwan Pee^a, Woo-Seok Cho^a, Kyung Ja Kim^a, Chin Mo Kim^b, Chul Sung Kim^b

^a Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Gyeongchung Rd., Sindun-Myeon, Icheon-si, Kyeonggi-do 467-843, Republic of Korea
^b Department of Physics, Kookmin University, Seoul 136-702, Republic of Korea

Received 25 May 2011; received in revised form 30 May 2011; accepted 30 May 2011

Available online 15 June 2011

Abstract

The dependence of the color of a celadon glaze on the chemical composition and the electronic state of Fe was investigated by Mössbauer spectroscopic and chromaticity analysis. The amount of Fe_2O_3 was found to be the main factor influencing L^* and b^* values, whereas the amount of Fe_2O_3 was found to affect all the parameters (L^* , a^* , b^*). The effect of MnO on the color was significant only by interaction terms. The amount of Pe_2O_3 was found to be the main factor of the b^* value. According to the Mössbauer analysis results, as the amount of divalent iron ions increases, the a^* and b^* values decreased; on the other hand, the L^* value increased. As the amount of titanium increased, Fe^{2^+} was found to be destabilized relative to Fe^{3^+} due to the structural instability of Fe-O-Ti network.

© 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Celadon; Mössbauer; Color; Glaze