Structural and Magnetic Properties of FeTiTaO₆ Il Jin Park¹, Woo Jun Kwon¹, Taejoon Kouh¹, Sung Baek Kim², and Chul Sung Kim¹ ¹Department of Physics, Kookmin University, Seoul 136-702, Korea ²Advancement for College Education Center, Konyang University, Chungnam, Korea We have investigated the structural and magnetic properties of FeTiTaO₆. From the Rietveld-refined XRD patterns of FeTiTaO₆, its crystal structure at room temperature is determined to be the rutile structure with lattice constants of $a_0=4.65$ Å, and $c_0=3.02$ Å. The c/a ratio of 0.649 is almost same as the value in the parent rutile ${\rm TiO_2}$, which is 0.644. Based on the temperature dependence of the susceptibility between 3 and 400 K, measured with superconducting quantum interference device (SQUID), the magnetic Néel temperature (T_N) , which is defined as temperature of the maximum slope in dM/dT, is determined to be 40 K. The detailed studies of the local structure have been carried out with $^{57}{\rm Co}$ Mössbauer spectroscopy at various temperatures. The Mössbauer spectra of FeTiTaO₆ were composed of two six-line hyperfine patterns below 40 K. Also, the magnetic hyperfine field of FeTiTaO₆ is found to be 472 kOe at 4.2 K. The Mössbauer spectra clearly reveal the presence of the magnetic ordering below 40 K in FeTiTaO₆. Index Terms—Antiferromagnetic, FeTiTaO₆, Jahn-Teller distortion, Mössbauer spectroscopy.