The Magnetic Behaviors of Spin-Glass FeGa₂O₄ System

Bo Ra Myoung, Seung Kyu Han, Sam Jin Kim, and Chul Sung Kim

Department of Physics, Kookmin University, Seoul 136-702, Korea

We present the investigation of magnetic properties of spin-glass ${\rm FeGa_2O_4}$ system. From X-ray diffraction patterns of ${\rm FeGa_2O_4}$, refined with Rietveld's refinement method, its structure is determined to be cubic spinel with space group Fd-3m and the lattice parameter of $a_0=8.385$ Å. From temperature-dependent magnetization curves under 1000 Oe, the Néel temperature is found to be $T_{\rm N}=14$ K, which coincides with the value obtained from the Mössbauer spectrum. The freezing temperature $T_{\rm f}$ of the sample shifts to higher temperature with increasing frequency, as seen in conventional metallic spin glasses. Also, we have determined the small activation energy, $E_{\rm a}$ of 1.04266×10^{-4} meV from Arrhenius law $\nu=\nu_0\exp(-E_{\rm a}/k_{\rm B}T_{\rm f})$, where $k_{\rm B}$ is Boltzmann constant, and $E_{\rm a}$ is activation energy. The Mössbauer spectrum at 4.2 K shows severely distorted 8-line shape coming from frozen spin-disorder state and an incommensurate spin structure, as in spin glasses. The change in the electric quadrupole shift above $T_{\rm f}$ is caused by the presence of the maximum electric dipole interaction among frozen disordered spins around $T_{\rm f}$ as in spin-glass material, and charge re-distribution from spin-relocation arising above $T_{\rm N}$.

Index Terms—Arrhenius law, freezing temperature, frozen disordered spin, spin-glass.