Magnetic Properties of Phospho-Olivine $Li(Fe_{1-x}Mn_x)PO_4$ Investigated With Mössbauer Spectroscopy

In Kyu Lee, Sam Jin Kim, and Chul Sung Kim

Department of Physics, Kookmin University, Seoul 136-702, Republic of Korea

The crystalline structure of the $\text{Li}(\text{Fe}_{1-x}\text{Mn}_x)\text{PO}_4$ (x=0.0,0.2) samples was determined to be olivine-type orthorhombic with Pnma space group. The contraction of unit cell volume from $\text{LiFe}_{0,8}\,\text{Mn}_{0,2}\,\text{PO}_4$ ($V=293.296\,\text{Å}^3$) to LiFePO_4 ($V=291.445\,\text{Å}^3$) can be explained by the different ionic radii of high-spin Fe^{2+} and Mn^{2+} . The temperature-dependent magnetic susceptibility and Curie-Weiss fitted reciprocal susceptibility curves of $\text{Li}(\text{Fe}_{1-x}\text{Mn}_x)\text{PO}_4$ indicates that there are antiferromagnetic ordering with different values of magnetic Nèel temperature and effective moment between $\text{LiFe}_{0,8}\,\text{Mn}_{0,2}\,\text{PO}_4$ ($T_N=49\,\text{K}$, $\mu_{\text{eff}}=5.66\,\mu_{\text{B}}$) and LiFePO_4 ($T_N=51\,\text{K}$, $\mu_{\text{eff}}=5.37\,\mu_{\text{B}}$). From the Mössbauer analysis, The distribution of the Mn^{2+} ($3d_5$) ions in M_2 magnetic sites can lead to the reduction of magnetic hyperfine field (H_{hf}) of $\text{LiFe}_{0,8}\,\text{Mn}_{0,2}\,\text{PO}_4$ in Fe^{2+} ($3d_6$) sites. Also, the isomer shift (δ) and electric quadrupole splitting (ΔE_Q) values, increasing with Mn^{2+} substitution, can be attributed to the decrease of charge density at Fe nucleus ρ_A (0) due to the 3d-electron penetrating closer to the Fe nucleus with asymmetric charge distribution by the presence of Mn^{2+} ions on the FeO $_6$ octahedral sites.

Index Terms—Antiferromagnetism, lithium-ion battery, Mössbauer spectroscopy, olivine.