Spin-reorientation in the antiferromagnetic ordering of LiFe_{1-x}Mn_xPO₄ investigated with Mössbauer spectroscopy

Woo Jun Kwon, In Kyu Lee, Chan Hyuk Rhee, and Chul Sung Kim^{a)} Department of Physics, Kookmin University, Seoul 136-702, South Korea

(Presented 1 November 2011; received 23 September 2011; accepted 21 November 2011; published online 8 March 2012)

The crystal structures of LiFe_{1-x}Mn_xPO₄ (x = 0.1, 0.3, 0.5) samples have been characterized with x-ray diffraction (XRD) and were determined to be orthorhombic with space group *Pnma* by Rietveld refinement method. The temperature dependence of the magnetization curves showed abnormal antiferromagnetic behavior as well as a decrease in Néel temperature (T_N) with Mn substitution from superconducting quantum interference device (SQUID) measurement. The magnetization decreases until the temperature reaches the spin-reorientation temperature (T_S) , and then increases with temperature up to T_N . The Mössbauer spectra of the LiFe_{1-x}Mn_xPO₄ show that the magnetic hyperfine field $(H_{\rm hf})$ and electric quadrupole splitting $(\Delta E_{\rm O})$ values change with increasing temperature, compared to values at $T_{\rm S}$, which is caused by the strong electric crystalline field originating from distorted octahedral symmetry. The decrease in T_S of LiFe_{1-x}Mn_xPO₄ can be explained by the Mn-concentration-dependent crystal field and spin-orbit coupling in the Fe²⁺ site. © 2012 American Institute of Physics. [doi:10.1063/1.3677867]