Structural and magnetic phase transition of mixed olivines $\text{Li}_x\text{Fe}_{1-y}\text{Ni}_y\text{PO}_4$ by lithium deintercalation In Kyu Lee, Chin Mo Kim, Sam Jin Kim, and Chul Sung Kim^{a)} Department of Physics, Kookmin University, Seoul 136-702, South Korea (Presented 1 November 2011; received 23 September 2011; accepted 28 November 2011; published online 9 March 2012) The structural and magnetic phase transitions of Li_xFe_{1-y}Ni_yPO₄ were investigated by x-ray diffraction (XRD), superconducting quantum interference device magnetometry, and Mössbauer spectroscopy. Rietveld refinement of XRD patterns of LiFe_{1-y}Ni_yPO₄ $(0.0 \le y \le 0.6)$ revealed that the lattice parameters $a_0 = 10.328$, $b_0 = 6.007$, and $c_0 = 4.692$ Å for LiFePO₄ changed linearly to $a_0 = 10.154$, $b_0 = 5.923$, and $c_0 = 4.687$ Å for LiFe_{0.4}Ni_{0.6}PO₄ with the substitution of Ni ions. Also, the fully lithium-deintercalated $Fe_{1-y}Ni_yPO_4$ (0.0 $\leq y \leq$ 0.6) series had enhanced lattice distortions along the c axis compared to LiFe_{1-v}Ni_vPO₄ because the Jahn-Teller distortion changed as the unit cell volume decreased due to lithium ion deintercalation. LiFe_{1-v}Ni_vPO₄ has an antiferromagnetic order; the magnetic Nèel temperature (T_N) decreased from 51 K for LiFePO₄ to 36 K for LiFe_{0.4}Ni_{0.6}PO₄. Fully deintercalated Fe_{1-v}Ni_vPO₄ has strong antiferromagnetic order; T_N decreased from 114 K for FePO₄ to 62 K for Fe_{0.4}Ni_{0.6}PO₄ due to the charge transition of Fe²⁺/Fe³⁺ and Ni²⁺/Ni³⁺, mediated by lithium ion vacancies in an olivine structure. The Mössbauer spectra below the T_N of $\text{Li}_x \text{Fe}_{1-y} \text{Ni}_y \text{PO}_4$ ($x = 0, 1, 0.0 \le y \le 0.6$) were fitted with eight asymmetrical Lorentzian functions. The electric quadrupole splitting value ($\Delta E_{\rm O}$) of LiFe_{1-v}Ni_vPO₄ is larger than that of $Fe_{1-y}Ni_yPO_4$ due to more asymmetric charge distributions around Fe^{2+} (3d⁶) than Fe^{3+} (3d⁵) in FeO₆ sites. © 2012 American Institute of Physics. [doi:10.1063/1.3678468]