PHYSICAL REVIEW B 85, 165136 (2012)

Valence states and spin structure of spinel FeV₂O₄ with different orbital degrees of freedom

J.-S. Kang, Jihoon Hwang, D. H. Kim, and Eunsook Lee Department of Physics, The Catholic University of Korea (CUK), Bucheon 420-743, Korea

W. C. Kim and C. S. Kim

Department of Physics, Kookmin University, Seoul 136-702, Korea

Sangil Kwon and Soonchil Lee Department of Physics, KAIST, Daejeon 305-701, Korea

J.-Y. Kim
Pohang Accelerator Laboratory, POSTECH 790-784, Korea

T. Ueno and M. Sawada

Hiroshima Synchrotron Radiation Center (HSRC), Hiroshima University, Higashi-Hiroshima 739-0046, Japan

Bongjae Kim, Beom Hyun Kim, and B. I. Min

Department of Physics, POSTECH, Pohang 790-784, Korea

(Received 17 February 2012; revised manuscript received 9 April 2012; published 23 April 2012)

The electronic structure of spinel FeV_2O_4 , which contains two Jahn-Teller active Fe and V ions, has been investigated by employing soft x-ray absorption spectroscopy (XAS), soft x-ray magnetic circular dichroism (XMCD), and nuclear magnetic resonance (NMR). XAS indicates that V ions are trivalent and Fe ions are nearly divalent. The signs of V and Fe 2p XMCD spectra are opposite to each other. It is found that the effect of the V 3d spin-orbit interaction on the V 2p XMCD spectrum is negligible, indicating that the orbital ordering of V t_{2g} states occurs from the real orbital states and that the orbital moment of a V^{3+} ion is mostly quenched. NMR shows that V spins are canted to have a Yafet-Kittel-type triangular spin configuration.

DOI: 10.1103/PhysRevB.85.165136 PACS number(s): 75.25.Dk, 78.20.Ls, 71.70.Ej, 76.60.-k