Soft x-ray magnetic circular dichroism study of valence and spin states in FeT_2O_4 (T = V, Cr) spinel oxides J.-S. Kang,^{1,a)} Jihoon Hwang,¹ D. H. Kim,¹ Eunsook Lee,¹ W. C. Kim,² C. S. Kim,² Han-Koo Lee,³ J.-Y. Kim,³ S. W. Han,⁴ S. C. Hong,⁴ Bongjae Kim,⁵ and B. I. Min⁵ ¹Department of Physics, The Catholic University of Korea (CUK), Bucheon 420-743, South Korea (Presented 15 January 2013; received 31 October 2012; accepted 20 November 2012; published online 5 March 2013) Electronic structures of spinel oxides FeT_2O_4 (T = V, Cr) have been investigated by employing soft x-ray magnetic circular dichroism (XMCD) and soft x-ray absorption spectroscopy (XAS). XAS reveals that Cr and V ions are trivalent, and that Fe ions are nearly divalent in FeT_2O_4 (T = V, Cr). Finite XMCD signals are observed in FeV_2O_4 at T = 80 K, while they are very weak in $FeCr_2O_4$. XMCD shows that Fe spins are antiparallel to V and Cr spins, with the V and Cr spins being canted from Fe spins, which suggests a Yafet-Kittel type triangular spin configuration in FeT_2O_4 (T = V, Cr). © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793769] ²Department of Physics, Kookmin University, Seoul 136-702, Korea ³Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea ⁴Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 680-749, Korea ⁵Department of Physics, POSTECH, Pohang 790-784, Korea