

Investigation of spin ordering in antiferromagnetic Fe_{1-x}Mn_xPO₄ with Mössbauer spectroscopy

Woo Jun Kwon, 1 Bo Wha Lee, 2 and Chul Sung Kim 1,a)

¹Department of Physics, Kookmin University, Seoul 136-702, South Korea

(Presented 18 January 2013; received 3 November 2012; accepted 28 November 2012; published online 12 March 2013)

We have investigated the spin ordering in $Fe_{1-x}Mn_xPO_4$, which is a possible cathode material for rechargeable lithium ion battery, with antiferromagnetic structure below Néel temperature (T_N) . The prepared $Fe_{1-x}Mn_xPO_4$ (x = 0.0, 0.1, and 0.3) samples have orthorhombic structures with space group of *Pnma*. These samples show the magnetic phase transition, caused by the strong crystalline field at the MO₆ octahedral sites. According to the temperature dependence of magnetic susceptibility of Fe_{1-x}Mn_xPO₄, all samples show antiferromagnetic behaviors. The Néel temperature (T_N) decreases from 114K at x = 0.0 to 97 K at x = 0.3 with Mn concentrations. The magnetization of $Fe_{1-x}Mn_xPO_4$ decreases until the temperature reaches the spin-reorientation (T_S) temperature, and then starts increasing as the temperature increases up to T_N . The T_S of the $Fe_{1-x}Mn_xPO_4$ were found to be 30, 27, and 24 K for x=0.0, 0.1, and 0.3. In order to investigate the hyperfine interaction of Fe³⁺ ions in FeO₆ octahedral sites, Mössbauer spectra of Fe_{1-x}Mn_xPO₄ have been taken at various temperatures from 4.2 to 295 K. The isomer shift (δ) values of the $Fe_{1-x}Mn_xPO_4$ were between 0.31 and 0.43 mm/s, indicating the high spin state of Fe^{3+} at all temperatures. The magnetic hyperfine field $(H_{\rm hf})$ and electric quadrupole splitting $(\Delta E_{\rm O})$ values of $Fe_{0.9}Mn_{0.1}PO_4$ at 4.2 K were determined to be $H_{hf} = 498$ kOe and $\Delta E_O = 2.1$ mm/s. We have also observed the abrupt changes in $H_{\rm hf}$ and $\Delta E_{\rm O}$ at 27 K for Fe_{0.9}Mn_{0.1}PO₄, and decrease the value of $T_{\rm S}$ of ${\rm Fe}_{1-x}{\rm Mn}_x{\rm PO}_4$ with Mn concentrations. Our study suggests that these changes in Fe_{1-x}Mn_xPO₄ are originated from the strong electric crystalline field and spin-orbit coupling of FeO₆ octahedral site. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794374]

²Department of Physics, Hankuk University of Foreign studies, Yongin, Kyungki 449-791, South Korea