

Mössbauer analysis of silicate $\text{Li}_2\text{FeSiO}_4$ and delithiated $\text{Li}_{2-x}\text{FeSiO}_4$ (x = 0.66) compounds

In Kyu Lee, Sam Jin Kim, Taejoon Kouh, and Chul Sung Kim^{a)}
Department of Physics, Kookmin University, Seoul 136-702, Republic of Korea

(Presented 16 January 2013; received 5 November 2012; accepted 9 January 2013; published online 4 April 2013)

Lithium iron silicate compounds of Li₂FeSiO₄ and partially delithiated Li_{2-x}FeSiO₄ (x = 0.66) were synthesized by vacuum-sealed solid-state and chemical delithiation reactions, and their magnetic properties were characterized based on Mössbauer analysis. Crystal structures of both $\text{Li}_2\text{FeSiO}_4$ and $\text{Li}_{2-x}\text{FeSiO}_4$ (x=0.66) compounds are found to be γ_s -type ($P2_1/n$) monoclinic structures with difference in the lattice parameters due to lithium delithiation. Mössbauer spectrum of $\text{Li}_2\text{FeSiO}_4$ below $T_{\text{N1}} = 20\,\text{K}$ exhibits eight Lorentzians of Fe^{2+} with antiferromagnetic ordering. However, the spectrum of intermediate $Li_{2-x}FeSiO_4$ (x = 0.66) compound shows the appearance of magnetically ordered Fe^{3+} sextet below $T_{N2} = 28 \,\mathrm{K}$. The temperature-dependent isomer shift of Li_{2-x}FeSiO₄ indicates the coexistence of nonequivalent Fe²⁺/Fe³⁺ valence states with the partial oxidation of FeO₄, enhanced by the lithium ion deficiency. Also, we have observed a considerable change in electric quadrupole interaction between Fe²⁺/Fe³⁺ ions in Li_{2-x}FeSiO₄, when compared to that of Li₂FeSiO₄, due to the different lattice and valence electron contributions, being originated from crystalline and valence transitions caused by the lithiation/delithiation process. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4799153]